
1

Sorting “Recap”

What is a natural way to sort?

Sorting:

- stacks of exams?

• want it easier to enter in a grade book 
and return in class?

- a hand of playing cards?

• want to be able to plan your strategy?

- a deck of playing cards?

• make sure no cards are missing?

- a case of collector cards?

• so you can make full sets?

- others?

Would any/all of these work as 
computer algorithms?

What if our data is held in arrays?



2

What is the input?

What do we need as input to a sorting 

algorithm?

– A list of values is the obvious thing we 

need.  For our initial discussions, this 

will be an array-based list.

– Is there anything else?

Some Sorting Algorithms

Some examples you’ve probably 

already seen:

– BubbleSort

– SelectionSort

– InsertionSort

With what similar philosophy do all 

these algorithms approach the 

problem of sorting?



3

InsertionSort

Input: list of values

Output: ordered list of values

Algorithm:

• Start with a one-element sorted list.

• Take “next” value and insert it in 

the correct place of the already-

sorted list.

• Repeat above until all values have 

been inserted.

InsertionSort Pseudocode

InsertionSort(L) {

/* start with L[1] as a one-element list that 
is already sorted */

for pos = 2 to L.length {

val = L[pos];

/* insert val in the correct place in the 
already ordered sublist, sliding elements 
over as you search */

iter = pos-1;

while (iter<>0) and (L[iter]>val) {

L[iter+1]=L[iter];

iter--;

}

L[iter+1]=val;

} //endfor

}



4

Analysis of InsertionSort

It is not recursive, so you can use 

summations to represent the for and 

while loops…

More sorting algorithms…

Some other examples you’ve probably 

already seen:

– MergeSort

– QuickSort

With what similar philosophy do both 

of these algorithms approach the 

problem of sorting?



5

MergeSort

An example of a Divide & Conquer 

algorithm.

– Split the list in half

– Sort each half

– Merge them back together

Common MergeSort 
Pseudocode

MergeSort (L, start, size) {

if (size>1) {

middle = Floor(size/2);

MergeSort(L,start,middle);

MergeSort(L,start+middle,size-middle);

Merge(L,start,middle,

start+middle,size-middle);

}

}

This algorithm re-uses the array holding the 

original list as it works.



6

Merge(L1,L2)

Since this sorting algorithm requires 

us to merge two array-based lists 

(stored in the same actual array in 

memory) we should discuss that as 

well.

“Thought Question” – Is it possible to 

perform an efficient merge of two 

logical sub-lists without using a large 

amount of temporary space of some 

sort in the array-based MergeSort?

Merge (Lst, left, left_size, right, right_size) {
new Array[left_size] L;
new Array[right_size] R; 
for i = 1 to left_size L[i]=Lst[left+i];
for i = 1 to right_size R[i]=Lst[right+i];

posL=1;
posR=1;
posLst=left;
while (posL<=left_size)&&(posR<=right_size) 

if L[posL]<R[posR] 
Lst[posLst++]=L[posL++];

else
Lst[posLst++]=R[posR++];

if (posR<=right_size)

for i=posR to right_size Lst[postLst++]=R[i];

else

for i=posL to left_size Lst[postLst++]=L[i];

}

What is the run-time of Merge in terms of 

data comparisons?



7

Analysis of MergeSort

if (size>1) {

middle = Floor(size/2);

MergeSort(L,start,middle);

MergeSort(L,start+middle,size-middle);

Merge(L,start,middle,

start+middle,size-middle);

}

Looking at comparisons:

T(1) = ???

T(n) = ???

NOTE: This is recursive, so our time on 

input of size n will be a recurrence 

relation!

InsertionSort -vs- MergeSort

Looking at comparison-counting only:

Who has the better best case?

Worse case?

Average case?

Are there other factors to consider?

Do these other factors matter 

asymptotically when comparing two 

algorithms?



8

Even more algorithms..

There are many more sorting 

algorithms out there…

– RadixSort

– BucketSort

– SpaghettiSort

– LUPsort

There are also algorithms designed 

specifically for multi-processor 

systems.

Does MergeSort lend itself to some 

parallelism easily?  What issues might 

arise?


