
(Re)Introduction to

Graphs and Some

Algorithms

Graph Terminology (I)

• A graph is defined by a set of vertices V

and a set of edges E.

• The edge set must work over the defined

vertices in the vertex set.

• Many different types of relationships can

be represented as graphs.

• Graphs (specifically edges) can be either

directed (eg: driving on a street) or

undirected (eg: walking on a street).

• If two vertices are connected by an edge,

we say those vertices are adjacent to each

other.

• Edges can have values associated with

them, in which case we call the graph a

weighted graph.

Graph Terminology (II)

• A path is a list of edges that are

sequentially connected. The length

of a path is the number of edges.

We will say that vertex b is

reachable from a if there is a path

from a to b.

• A cycle is a path where the starting

vertex is also the ending vertex.

• A Hamiltonian Path is a path that

visits every vertex in a graph

exactly once.

• An Eulerian Path is a path that visits

every edge in a graph exactly once.

Graph Representation

(Directed)

Graph Representation

(Undirected)

A Proof on Graphs

Definitions: In a directed graph, the
in-degree of a vertex is the number
of edges going into it and the out-
degree of a vertex is the number of
edges coming out of it.

Theorem:

Σ in-degree(v) = Σ out-degree(v)

Proof will be by induction. Start with
a base case of a graph with a single
edge. For the inductive hypothesis,
say that for any graph with an edge
set of size k that the theorem holds.
Then show that it holds for any
graph with an edge set of size k+1.

Inductive Hypothesis

For any graph with edge set of size k (k≥1)

Σ in-degree(v) = Σ out-degree(v)

Inductive Step

Show that for any graph G with edge set of size

k+1 that Σ in-degree(v) = Σ out-degree(v)

Let H be a generic particular graph with k+1

edges.

Select an edge (call it e1) and remove it from the

edge set to create a new graph H’.

By our definitions,

Σ in-degree(v) = Σ in-degree(v) + 1

Σ out-degree(v) = Σ out-degree(v) + 1

Can now ask:

Σ in-degree(v) + 1 = Σ out-degree(v) + 1

How can we solve Eulerian path?

If all we want is a yes/no answer, it’s

fairly easy.

If we also want to find the actual path

if it exists, that becomes a much more

involved question…

For one point, we need to think about

algorithms that are able to traverse

graphs. So, let’s look at one…

Breadth-First Search

Given a graph, one way to have an
algorithm try to visit every vertex in
that graph is via a breadth-first search.

– Select a starting point.

– Visit all vertices that are “one jump”
away from it.

– Visit all vertices that are “two jumps”
away from it.

– etc.

What if the graph is directed?

If the graph is not connected, what
ends up happening?

A simple problem that can be solved
using this general technique is that of
finding the shortest path between two
vertices in an undirected and
unweighted graph.

Shortest Path via BFS
Starting at vertex s∈V generate an array of

distances from s called dist[] such that ∀v∈V,

dist[v]=length of shortest path from s to v.

dist[s]=0

We will also create a predecessor array of the

last vertex we were at before getting to the

end of the path from s to v

∀v∈V, pred[v]=“one step back”

pred[s]=none

With just these two arrays, we will be able to

reconstruct any shortest part request from s to

some vertex.

This is because any sub-path of the optimal path

must also be an optimal path between its own

endpoints.

If it weren’t, then we could have replaced it and

gotten a shorter overall path.

Basic Pseudocode

Start at s.

For each neighbor v of s

dist[v]=1

pred[v]=s.

Move outwards from each neighbor

you’ve seen and set the next “ripple”

out as “+1” of the current distance,

and set pred[] appropriately.

Need a way to make sure we don’t end

up in cycles!

Avoiding Cycles

We will assign a color to each vertex based

on the following rules:

- white = not seen yet at all

- gray = seen but not processed yet

- black = processed

We will create a queue of gray vertices, and

will never add any vertex to the queue

more than once.

When we are done processing a vertex (ie:

we have touched all its neighbors) we go

back to the queue to get the next vertex to

process.

More Detailed Pseudocode
BFS (Graph G, vertex s) {

int size = G.getVertexCount;

int dist = new int[size];

vertex pred = new int[size];

Queue Q= new Queue<vertex>;

Colors state = new Colors[size];

for each v in G.V {

state[v]=white; dist[v]=infinity; pred[v]=none;

}

state[s]=gray; dist[s]=0; pred[s]=none;

Q.add(s);

while (!Q.empty()){

u=Q.remove();

for each unvisited v in G.Adj(u) {

state[v]=gray;

dist[v]=dist[u]+1;

pred[v]=u;

Q.add(v);

}

state[u]=black;

}

}

What’s the runtime?

Each vertex gets enqueued at most one time,

so each is processed at most one time.

– Write this up using a summation to represent

the processing of all of the vertices…

Our runtime will be order:

|V| for all of the initializations

The while loop’s cost can be seen as the

sum across all vertices u in V of:
- the degree(u) for work inside the for loop

- “+1” for the work outside of the for loop

We can split the summation into two

simpler ones and if you work it through,

the runtime is O(|V|+|E|).

What else does BFS give us?

It allows us to organize the entire

graph as “ripples” away from a central

point.

– This could be useful if we could

restate other questions within this

framework.

Our predecessor array could be used

to create a tree rooted at source s of

vertices that can be reached from s.

– This is often called a breadth-first tree.

– If we could phrase a problem as a

traversal of this tree…

Depth-First Search

You could basically just change the

Queue in the BFS code into a Stack.

You could also just write it out as a

recursive algorithm.

This approach can also be used to

determine what vertices are reachable

in O(|E|+|V|) time.

DFS on a Directed Graph

with “Timing” Info

We can add more arrays and store

information such as when (in terms of

a continuously advancing ticker) each

vertex is first visited (enter) and

finally processed (exit).

Even in a connected graph, we might

end up having to build a forest of trees

to give every vertex a set of times.

– After doing a DFS from a given

starting point, if there are vertices with

no times, choose one of them, and

continue.

Example Graph

Topological Sort of a Digraph

NOTE: This only works if there are no

cycles, since if there are cycles there

isn’t the notion of a sorted order.

Imagine a graph as beads where the

edges are strings of equal length

connecting ordered pairs of beads.

You want to arrange the beads so that

all edges point left-to-right.

How can you use a DFS with “timing”

info to accomplish this?

– Perform the DFS with timing and then

“sort” by listing the nodes in reverse

order based on the exit times.

Strongly Connected

Components

We define “strongly connected” to

mean that for every pair of vertices

(u,v) in the component, there is a

path from u to v and from v to u.

In the following graph, what are the

strongly connected components?

Finding the SCCs

Step 1: Perform a DFS with “timing”
on the graph G.

Step 2: Perform a DFS with “timing”
on the graph GT with the added
restriction that when you have a
choice of vertices, you choose the one
with the largest finish time from Step
1’s search.

Every time your algorithm hits a dead-
end, you have finished one strongly
connected component and are ready to
start finding the next one.

Let’s trace this on the graph from the
previous slide…

Could you use a BFS or DFS to…

Detect whether a given graph has any

cycles?

– Yes.

Determine whether every vertex is

reachable from a particular vertex in a

given graph?

– Yes.

Find the longest simple path through a

graph between two vertices in an

unweighted graph that might contain

cycles?

– No!

