
Analyzing the Fibonacci

Sequence, Transitive

Closure, and a Bubblish

Sort

The nth Fibonacci number

The 0th number of the Fibonacci

sequence is 0.

The 1st number of the Fibonacci

sequence is 1.

The nth number of the Fibonacci

sequence is defined as the sum of

the previous two numbers in the

sequence.

This is a recursive definition, and

appears to be an excellent candidate

for a recursive solution…

Recursive Algorithm

long fib(int n) {

if (n<2) return n;

return fib(n-1)+fib(n-2);

}

Let’s assume that a comparison has a

cost of 1 in terms of run-time, and

that this is the only cost we care

about.

We want to know the run-time of this

algorithm on input n. We will call

this T(n).

Computing the Run-Time

Given the following recurrence:

T(0)=T(1)=1

T(i)=1+T(i-1)+T(i-2)

If we assume that ∃x∈R+ s.t. T(n)≤xn

then we can solve for x.

Can we do better?

Is there a way to improve the recursive

algorithm if we are allowed to allocate an

array? Consider the following example

using memoization:

long fib(int n) {

static long Marr[1000]={0,1};

static int Mlast=1;

if (n>Mlast) {

long x=fib(n-1)+fib(n-2);

Mlast=n;

Marr[Mlast]=x;

}

return Marr[n];

}

Does this work?

What is it’s run-time?

What about plain iteration?

long fib(int n) {

long first=0, second=1, tmp;

for (int i=0; i<n; i++) {

tmp = first+second;

first = second;

second = tmp;

}

return first;

}

Does it work?

What is it’s run-time?

Can we do better?

How about just a formula?

Is this a faster way to compute the nth Fibonacci number?

Transitive Closure

for outer = 1 to n

for i = 1 to n

for j = 1 to n

for k = 1 to n

if (R(i,j) ^ R(j,k))

then R(i,k) = true;

This is an “overkill” implementation

of transitive closure.

What is its runtime in terms of if

statements?

Better Transitive Closure?

Is there a better algorithm? How do
we define “better” when talking
about algorithms?

Could we shave some iterations off
the i, j, or k loops? Would doing so
limit the types of graphs on which
the algorithm would work? What
would such a change (if valid)
actually save?

Let’s assume we could shorten each
loop by one iteration. How do we
calculate the runtime when the loops
differ in starting and ending values?

Loops with Dependencies

As we explore more, we sometimes

have loops in an algorithm that are

not independent.

Example: BubblishSort

for i = 1 to n-1

for j = i+1 to n

if (ai>aj) then swap(ai,aj);

What is the runtime in terms of if

statements?

