
CMSC 330: Organization of
Programming Languages

Logic Programming with Prolog

CMSC 330 Spring 2017 1

2

Background

1972, University of Aix-Marseille

Original goal: Natural language processing

At first, just an interpreter written in Algol
• Compiler created at Univ. of Edinburgh

CMSC 330 Spring 2017

3

More Information On Prolog

Various tutorials
available online
Links on webpage

CMSC 330 Spring 2017

4

Logic Programming

At a high level, logic programs model the
relationship between objects
1. Programmer specifies relationships at a high level
2. Programmer specifies basic facts

Ø The facts and relationships define a kind of database
3. Programmer then queries this database
4. Language searches the database for answers

CMSC 330 Spring 2017

5

Features of Prolog
Declarative
• Facts are specified as tuples, relationships as rules
• Queries stated as goals you want to prove, not

(necessarily) how to prove them
Dynamically typed
Several built-in datatypes
• Lists, numbers, records, … but no functions

Prolog is not the only logic programming language
• Datalog is simpler; CLP and λProlog more feature-ful
• Erlang borrows some features from Prolog

CMSC 330 Spring 2017

6

A Small Prolog Program – Things to Notice

/* A small Prolog program: 01-basics.pl */

% facts:
female(alice).
male(bob).
male(charlie).
father(bob, charlie).
mother(alice, charlie).

% rules for “X is a son of Y”
son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

Use /* */ for comments, or % for 1-liners

Lowercase denotes
atoms

Uppercase denotes
variables

Periods end statements

Program statements
are facts and rules

CMSC 330 Spring 2017

7

Running Prolog (Interactive Mode)
Navigating location and loading program at top level

?- working_directory(C,C).

C = ’c:/windows/system32/’.

?- working_directory(C,’c:/Users/me/desktop/p6’).

C = ’c:/Users/me/desktop/’.

?- [’01-basics.pl’].

% 01-basics.pl compiled 0.00 sec, 17 clauses

true.

?- make.

true.

CMSC 330 Spring 2017

Load file 01-basics.pl

Reload modified files; replace rules

Find current directory

Set directory

8

Running Prolog (Interactive Mode)
Queries
?- son(X,bob).

X = charlie.

?- son(alice,X).

false.

CMSC 330 Spring 2017

Valuation of X that
would make the query
true.

/* A small Prolog program: 01-basics.pl */

% facts:
female(alice).
male(bob).
male(charlie).
father(bob, charlie).
mother(alice, charlie).

% rules for “X is a son of Y”
son(X, Y) :- father(Y, X), male(X).
son(X, Y) :- mother(Y, X), male(X).

No valuation of X is
possible.

9

Running Prolog (Interactive Mode)
Listing rules and entering queries at top level
?- listing(son).

son(X, Y) :-

father(Y, X),

male(X).

son(X, Y) :-

mother(Y, X),

male(X).

true.

?- son(X,Y).

X = charlie,

Y = bob;

X = charlie,

Y = alice.

Multiple answers

CMSC 330 Spring 2017

User types ; to request
additional answer

User types return to
complete request

List rules for son

Quiz #1: What is the result?

CMSC 330 Spring 2017 10

hobbit(frodo).
hobbit(samwise).
human(aragorn).
human(gandalf). A. Z=aragorn

B. Z=aragorn; Z=gandalf.
C. Z=gandalf.
D. false.

Facts:
?- human(Z).
Query:

Quiz #1: What is the result?

CMSC 330 Spring 2017 11

hobbit(frodo).
hobbit(samwise).
human(aragorn).
human(gandalf). A. Z=aragorn

B. Z=aragorn; Z=gandalf.
C. Z=gandalf.
D. false.

Facts:
?- human(Z).
Query:

Quiz #2: What are the values of Z?

CMSC 330 Spring 2017 12

hobbit(frodo).
hobbit(samwise).
human(aragorn).
human(gandalf).
taller(gandalf, aragorn).
taller(X,Y) :-

human(X), hobbit(Y).

A. aragorn
B. frodo; samwise.
C. gandalf; aragorn.
D. aragorn;frodo;samwise.

Facts:
?- taller(gandalf,Z).
Query:

Quiz #2: What are the values of Z?

CMSC 330 Spring 2017 13

hobbit(frodo).
hobbit(samwise).
human(aragorn).
human(gandalf).
taller(gandalf, aragorn).
taller(X,Y) :-

human(X), hobbit(Y).

A. aragorn
B. frodo; samwise.
C. gandalf; aragorn.
D. aragorn;frodo;samwise.

Facts:
?- taller(gandalf,Z).
Query:

Outline

Syntax, terms, examples
Unification
Arithmetic / evaluation
Programming conventions
Goal evaluation
• Search tree, clause tree

Lists
Built-in operators
Cut, negation

CMSC 330 Spring 2017 14

Prolog Syntax and Terminology

Terms
• Atoms: begin with a lowercase letter

horse underscores_ok numbers2
• Numbers

123 -234 -12e-4
• Variables: begin with uppercase or _

X Biggest_Animal _the_biggest1 _
• Compound terms: functor(arguments)

bigger(horse, duck)
bigger(X, duck)
f(a, g(X, _), Y, _)

No blank spaces between functor and (arguments)
CMSC 330 Spring 2017 15

“don’t care” variables

Prolog Syntax and Terminology (cont.)

Clauses (aka statements)
• Facts: define predicates, terminated by a period

bigger(horse, duck).
bigger(duck, gnat).

Intuitively: “this particular relationship is true”
• Rules: head :- body

is_bigger(X,Y) :- bigger(X,Y).
is_bigger(X,Y) :- bigger(X,Z), is_bigger(Z,Y).

Intuitively: “Head if Body”, or “Head is true if each of
the subgoals in the body can be shown to be true”

A program is a sequence of clauses

CMSC 330 Spring 2017 16

Program Style

blond(X) :-
father(Father, X),
blond(Father), % father is blond
mother(Mother, X),
blond(Mother). % and mother is blond

CMSC 330 Spring 2017 17

One predicate per line

Inline comments with % can be useful
Descriptive variable names

Prolog Syntax and Terminology (cont.)

Queries
• To “run a program” is to submit queries to the

interpreter
• Same structure as the body of a rule

Ø Predicates separated by commas, ended with a period
• Prolog tries to determine whether or not the

predicates are true

?- is_bigger(horse, duck).
?- is_bigger(horse, X).

“Does there exist a substitution for X such that
is_bigger(horse,X)?”

CMSC 330 Spring 2017 18

Unification – The Sine Qua Non of Prolog

Two terms unify if and only if
• They are identical

?- gnat = gnat.
true.

• They can be made identical by substituting variables
?- is_bigger(X, gnat) = is_bigger(horse, gnat).
X = horse.

CMSC 330 Spring 2017 19

This is the substitution: what X must be
for the two terms to be identical.

Sometimes there are multiple
possible substitutions; Prolog can
be asked to enumerate them all

Without which, nothing

?- pred(X, 2, 2) = pred(1, Y, X)
false.

?- pred(X, 2, 2) = pred(1, Y, _)
X = 1,
Y = 2.

The = Operator

For unification (matching)
?- 9 = 9.
true.
?- 7 + 2 = 9.
false.
Why? Because these terms do not match
• 7+2 is a compound term (e.g., +(7,2))

Prolog does not evaluate either side of =
• Before trying to match

CMSC 330 Spring 2017 20

The is Operator

For arithmetic operations
LHS is RHS
• First evaluate the RHS (and RHS only!) to value V
• Then match: LHS = V

Examples
?- 9 is 7+2. ?- 7+2 is 9.
true. false.

?- X = 7+2. ?- X is 7+2.
X = 7+2. X = 9.

CMSC 330 Spring 2017 21

Quiz #3: What does this evaluate to?

CMSC 330 Spring 2017 22

?- 9 = 7+2.

A. true
B. false

Query:

Quiz #3: What does this evaluate to?

CMSC 330 Spring 2017 23

?- 9 = 7+2.

A. true
B. false

Query:

No Mutable Variables

= and is operators do not perform assignment
• Variables take on exactly one value (“unified”)

Example
• foo(...,X) :- ... X = 1,... % true only if X = 1
• foo(...,X) :- ... X = 1, ..., X = 2, ... % always fails
• foo(...,X) :- ... X is 1,... % true only if X = 1
• foo(...,X) :- ... X is 1, ..., X is 2, ... % always fails

CMSC 330 Spring 2017 24

X can’t be unified with 1 & 2 at the same time

Function Parameter & Return Value

Code example

increment(X,Y) :-
Y is X+1.

?- increment(1,Z).
Z = 2.
?- increment(1,2).
true.
?- increment(Z,2).
ERROR: incr/2: Arguments are not sufficiently instantiated

CMSC 330 Spring 2017 25

Parameter
Return value

Query
Result

Can’t evaluate X+1
since X is not yet
instantiated to int

Function Parameter & Return Value

Code example

addN(X,N,Y) :-
Y is X+N.

?- addN(1,2,Z).
Z = 3.

CMSC 330 Spring 2017 26

Parameters
Return value

Query
Result

Recursion

Code example
addN(X,0,X).
addN(X,N,Y) :-

X1 is X+1,
N1 is N-1,
addN(X1,N1,Y).

?- addN(1,2,Z).
Z = 3.

CMSC 330 Spring 2017 27

Base case

Inductive step

Recursive call

Quiz #4: What are the values of X?

CMSC 330 Spring 2017 28

mystery(_,0,1).

mystery(X,1,X).
mystery(X,N,Y) :-

N > 1,

X1 is X*X,
 N1 is N-1,
mystery(X1,N1,Y).

A. 1.
B. 32.
C. 25.
D. 1; 25.

Facts:
?- mystery(5,2,X).
Query:

Quiz #4: What are the values of X?

CMSC 330 Spring 2017 29

mystery(_,0,1).

mystery(X,1,X).
mystery(X,N,Y) :-

N > 1,

X1 is X*X,
 N1 is N-1,
mystery(X1,N1,Y).

A. 1.
B. 32.
C. 25.
D. 1; 25.

Facts:
?- mystery(5,2,X).
Query:

Factorial

Code
factorial(0,1).
factorial(N,F) :-

N > 0,
N1 is N-1,
factorial(N1,F1),
F is N*F1.

CMSC 330 Spring 2017 30

Tail Recursive Factorial w/ Accumulator

Code
tail_factorial(0,F,F).
tail_factorial(N,A,F) :-

N > 0,
A1 is N*A,
N1 is N -1,
tail_factorial(N1,A1,F).

CMSC 330 Spring 2017 31

And and Or

And
• To implement X && Y use , in body of clause
• E.g., for Z to be true when X and Y are true, write

Z :- X,Y.

Or
• To implement X || Y use two clauses
• E.g., for Z to be true when X or Y is true, write

Z :- X.
Z :- Y.

CMSC 330 Spring 2017 32

Goal Execution

When submitting a query, we ask Prolog to
substitute variables as necessary to make it true
Prolog performs goal execution to find a solution
• Start with the goal, and go through statements in order
• Try to unify the head of a statement with the goal
• If statement is a rule, its hypotheses become subgoals

Ø Substitutions from one subgoal constrain solutions to the next
• If goal execution reaches a dead end, it backtracks

Ø Tries the next statement
• When no statements left to try, it reports false

More advanced topics later – cuts, negation, etc.
CMSC 330 Spring 2017 33

Goal Execution (cont.)

Consider the following:
• “All men are mortal”

mortal(X) :- man(X).
• “Socrates is a man”

man(socrates).
• “Is Socrates mortal?”

?- mortal(socrates).
true.

How did Prolog infer
this?

CMSC 330 Spring 2017 34

1. Sets mortal(socrates) as the
initial goal

2. Sees if it unifies with the
head of any clause:
mortal(socrates) = mortal(X).

3. man(socrates) becomes the
new goal (since X=socrates)

4. Recursively scans through
all clauses, backtracking if
needed …

Clause Tree

Clause tree
• Shows (recursive) evaluation of all clauses
• Shows value (instance) of variable for each clause
• Clause tree is true if all leaves are true

Factorial example

CMSC 330 Spring 2017 35

factorial(0,1).
factorial(N,F) :-

N > 0,
N1 is N-1,
factorial(N1,F1),
F is N*F1.

Clause Tree

Clause tree
• Shows (recursive) evaluation of all clauses
• Shows value (instance) of variable for each clause
• Clause tree is true if all leaves are true

Factorial example

CMSC 330 Spring 2017 36

factorial(0,1).
factorial(N,F) :-

N > 0,
N1 is N-1,
factorial(N1,F1),
F is N*F1.

Tracing

trace lets you step through a goal’s execution
• notrace turns it off

CMSC 330 Spring 2017 37

?- trace.
true.

[trace] ?- my_last(X, [1,2,3]).
Call: (6) my_last(_G2148, [1, 2, 3]) ? creep
Call: (7) my_last(_G2148, [2, 3]) ? creep
Call: (8) my_last(_G2148, [3]) ? creep
Exit: (8) my_last(3, [3]) ? creep
Exit: (7) my_last(3, [2, 3]) ? creep
Exit: (6) my_last(3, [1, 2, 3]) ? creep

X = 3

my_last(X, [X]).

my_last(X, [_|T]) :-
my_last(X, T).

1

2

2

2

1

Goal Execution – Backtracking

Clauses are tried in order
• If clause fails, try next clause, if available

Example
jedi(luke).
jedi(yoda).
sith(vader).
sith(maul).
fight(X,Y) :- jedi(X), sith(Y).

CMSC 330 Spring 2017 38

?- fight(A,B).
A=luke,
B=vader;
A=luke,
B=maul;
A=yoda,
B=vader;
A=yoda,
B=maul.

Prolog (Search / Proof / Execution) Tree

CMSC 330 Spring 2017 39

?- fight(A,B).

?- jedi(X),sith(Y).

?- jedi(luke),sith(Y).

?- sith(vader). ?- sith(maul).

?- jedi(yoda),sith(Y).

?- sith(vader). ?- sith(maul).

A=X,B=Y

X=luke X=yoda

Y=vader Y=maul Y=vader Y=maul

