Problem Set #9

CMSC 657 Instructor: Daniel Gottesman

Due on Gradescope, Thursday, Nov. 7, 2024, at 5:00 PM

Problem #1. Practice with Stabilizer Codes (30 pts.)

For this problem, consider the code with stabilizer S generated by:

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
Z_1	Z_2	Z_3	Z_4	Z_5	Z_6	Z_7	Z_8
X_1	Ι	X_3	Ι	Z_5	Y_6	Z_7	Y_8
X_1	Ι	Y_3	Z_4	X_5	Ι	Y_7	Z_8
X_1	Z_2	Ι	Y_4	Ι	Y_6	X_7	Z_8

- a) (5 pts.) How many encoded qubits does this code have?
- b) (8 pts.) Find the error syndrome of the following errors: X_3 , Y_5 , X_3Y_5 , $X_3Y_5Z_8$.
- c) (8 pts.) Based *only* on the answers from the previous part and the fact that none of the Paulis in part b is in S, what can you say about the distance of this code?
- d) (9 pts.) Consider the Pauli $P = Y_1 Z_2 Y_3 Z_4 X_6 X_8$. Is P in N(S)? Is P in S? Is -P in S?

Problem #2. Error Syndromes and Cosets (30 pts.)

Recall that $N(S) = \{P | [P, M] = 0 \forall M \in S\}$. If H is a subgroup of a group G, a coset of H in G is the set $\{gh | h \in H\}$ for some $g \in G$. (See the notes on group theory on the course web page if you need further background with groups.)

- a) (10 pts.) Let M and N be two elements of N(S). Recall that this implies that M and N map codewords to codewords, meaning they are unitaries acting on the logical qubit(s) of the code. Show that $M|\psi\rangle = N|\psi\rangle$ for all codewords $|\psi\rangle$ iff M and N are in the same coset of S in N(S). Therefore, each coset of S in N(S) represents a different logical unitary.
- b) (10 pts.) Show that two Pauli errors E and F have the same error syndrome for a stabilizer code S iff they are in the same coset of N(S) in \mathcal{P}_n . Thus, the error syndrome is a property of cosets of N(S).
- c) (10 pts.) Suppose that a Pauli error E occurs on a codeword of the stabilizer code S, but we try to correct it by instead applying Pauli error F with the same error syndrome as E. Show that the resulting state is always a codeword.