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1 Density Matrices

1.1 Properties and Decompositions

What are the properties of a density matrix? Which matrices can be density matrices of some mixed state?

Theorem 1. Any density matrix ρ has the following properties:

1. Tr ρ = 1

2. ρ = ρ† (i.e., ρ is Hermitian)

3. ρ is a positive semi-definite matrix

Moreover, any D ×D matrix with these properties is a density matrix; that is, there exists an ensemble of
states that has this matrix as a density matrix.

Proof. It is easy to see that Tr ρ = 1 for any density matrix:

Tr ρ =
∑
a

ρaa =
∑
i,a

pi|ci,a|2. (1)

But
∑
a |ci,a|2 = 1 because |ψi〉 is normalized and

∑
i pi = 1 because we have a probability distribution, and

therefore Tr ρ = 1.
It is equally easy to show that ρ is Hermitian:

ρ† =
∑
i

pi(|ψi〉〈ψi|)† =
∑
i

pi|ψi〉〈ψi| = ρ. (2)

To see that ρ is postive semi-definite, we look at

〈φ|ρ|φ〉 =
∑
i

pi〈φ|ψi〉〈ψi|φ〉 =
∑
i

pi|〈φ|ψi〉|2 ≥ 0. (3)

Thus, ρ is positive semi-definite.
To see that any D×D matrix ρ with these two properties can be realized as a density matrix, note that

any positive semi-definite matrix can be diagonalized with a unitary change of basis. In this choice of basis
{|a〉}, we write ρ =

∑
a ρaa|a〉〈a|, and since ρ is Hermitian, ρ∗aa = ρaa, that is, the diagonal elements are

real. Because ρaa is positive semi-definite, ρaa ≥ 0. Moreover, Tr ρ =
∑
a ρaa, so we can let pa = ρaa, and

{pa} form a probability distribution. Thus, we have the ensemble which, with probability pa gives us the
state |a〉, and this ensemble has density matrix ρ.
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Note that the decomposition of a mixed state as a mixture of pure states need not be unique. Even
disregarding trivial decompositions where we get the same state |ψi〉 appearing more than once in the
mixture, the only states which have a unique decomposition are pure states. There is always one choice
of decomposition where the mixed state is a mixture of basis states, but we don’t always consider this a
“classical” mixture, because the basis states might be very weird (e.g., entangled states).

Note that a density matrix represents a pure state if and only if ρ2 = ρ. Why is this? We can diagonalize
ρ as in the proof of thm. 1, and ρ is pure if and only if it has only one non-zero eigenvalue (which must be
1 because Tr ρ = 1), which is also equivalent to ρ2 = ρ.

Example of decompositions: The mixture composed of 50% |0〉 and 50% |1〉 has density matrix

ρ =
1

2
|0〉〈0|+ 1

2
|1〉〈1|. (4)

Now consider the mixture of 50% |+〉 = 1√
2
(|0〉 + |1〉) and 50% |−〉 = 1√

2
(|0〉 − |1〉). The density matrix of

this mixture is

ρ =
1

4
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) (5)

+
1

4
(|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|) (6)

=
1

2
(|0〉〈0|+ |1〉〈1|). (7)

The other way to get a mixed state is to discard part of a larger quantum state. Suppose we have a
bipartite system whose pure states live in the tensor product Hilbert space A ⊗ B. To understand what
happens in such a system, let us first consider the classical special case, where ρAB is diagonal. In this case,
ρAB represents a joint probability distribution pab. If we only care about the marginal distribution for the
ourcomes of A, we would find pa =

∑
b pab.

The quantum analog of this is the partial trace: Given a mixed state ρAB on the tensor product space,
we can find the density matrix of part of it by tracing over the other part, ρA = TrB ρAB . If

ρAB =
∑

a,a′,b,b′

ρaba′b′ |a〉A|b〉B〈a′|A〈b′|B , (8)

then

ρA = TrB ρAB =
∑
a,a′

(∑
c

ρaca′c

)
|a〉A〈a′|A. (9)

Here’s an example. Let us take the pure state |ψ〉 = 1√
2
(|00〉+ |11〉). Then it has the density matrix

ρ =


1/2 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 1/2

 . (10)

The rows and columns are indexed, in order, by the basis states |0〉A|0〉B , |0〉A|1〉B , |1〉A|0〉B , |1〉A|1〉B . We
can write ρ with block matrices representing the different states of B for a fixed state of A. Then to trace
over B, we just trace over each of the block matrices, getting

TrB ρ =

(
1/2 0
0 1/2

)
. (11)

This is the maximally mixed state, the result of mixing equal amounts of 0 and 1 or really any two orthonormal
basis states. You can also get it by mixing an equal amount of all pure states.
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Note that if you trace over part of a tensor product pure state, the resulting state is still pure. It turns
out that if you trace over one subsystem of an entangled pure state, the resulting state is always mixed, so
this is a way of telling if a pure state is entangled or not. We will discuss this criterion more later in the
class.

People often talk about a proper mixture as a density matrix formed by a probabilistic mixture of states,
whereas an improper mixture is made by discarding (tracing over) a subsystem of an entangled pure state.
However, there is no actual physical way to distinguish the two.

1.2 Density Matrices and Unitary Operations

Suppose we perform a unitary transformation U on a mixed state with density matrix ρ. What do we get?
If ρ = |ψ〉〈ψ| is a pure state, we know we get the density matrix

U(ρ) = U |ψ〉〈ψ|U† = UρU†. (12)

corresponding to the pure state U |ψ〉. If we have a mixed state, we began with the state |ψi〉 with probability
pi, so after the unitary, we should have U |ψi〉 with probability pi. That is,

U(ρ) =
∑
i

piU |ψi〉〈ψi|U† = UρU† (13)

once again.

1.3 Density Matrices and Projective Measurements

When we make a projective measurement on a density matrix, the measurement is still defined by a set of
projectors {Πi}. The probability of outcome i when the state ρ is measured is

Prob(i) = Tr(Πiρ). (14)

This is consistent with the rule for pure states: Consider a pure state |ψ〉 =
∑
a αa|a〉. It has density matrix

ρ = |ψ〉〈ψ|. Then

Prob(i) =
∑
a

〈a|(Πi|ψ〉〈ψ|)|a〉 (15)

=
∑
a,b,c

αbα
∗
c〈a|Πi|b〉〈c|a〉 (16)

=
∑
a,b

α∗aαb〈a|Πi|b〉 (17)

=〈ψ|Πi|ψ〉. (18)

There is a quicker way to see this calculation, because

Tr(M |ψ〉〈φ|) = 〈φ|M |ψ〉 (19)

in general. This is an example of the cyclicity of the trace: The kets and bras are column and row vectors,
which are also non-square matrices. Therefore, we can do a cyclic rotation of the argument of the trace and
move the bra into the front. The product of the matrices then just gives us a scalar number, which is a 1×1
matrix, so the trace returns that number.

When we have a mixture of pure states, |ψj〉 with probability pj , then

Prob(i)(ρ) = Tr(Πiρ) =
∑
j

pj Tr(Πi|ψj〉〈ψj |) =
∑
j

pjProb(i)(|ψj〉). (20)
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That is, the probability of an outcome i is the average over the probabilities of getting i for the pure states
in the ensemble. This is what we should expect and it validates the use of density matrices for mixed
states. This formula lets us see immediately that the measurement outcomes of projective measurements
only depends on the density matrix and not on the way it is formed, or indeed, whether it is a proper or
improper mixture. This is why the density matrix is a good way of representing mixed states — it contains
all the relevant information about the state.

Recall that if we make a partial measurement, there is some residual state left over. How does that work
with density matrices? Let ρ =

∑
pi|ψi〉〈ψi|. Then if we make the partial projective measurement {Πa}, we

can imagine that we happen to have the state |ψi〉, which happens with probability pi. We get the outcome
a with probability qi,a = 〈ψi|Πa|ψi〉. In this case, the residual state is

1
√
qi,a

Πa|ψi〉. (21)

Since we initially have state |ψi〉 with probability pi and get outcome a with probability qi,a, the net
probability of this outcome is piqi,a. (Note here that we have just have a classical mixture, qi,a i the
conditional probability of getting a conditioned on having had i.) We can get the overall density matrix
after measurement by averaging over i that give this a:

ρ′a =
1∑

i piqi,a

∑
i

piqi,a
1

qi,a
Πa|ψi〉〈ψi|Πa (22)

=
1∑

i piqi,a

∑
i

piΠa|ψi〉〈ψi|Πa (23)

=
1∑

i piqi,a
Πa

(∑
i

pi|ψi〉〈ψi|

)
Πa (24)

=
1∑

i piqi,a
ΠaρΠa. (25)

Note that
∑
i piqi,a = pa is the marginal probability of getting outcome a, averaged over states i in the

mixture. This is thus the natural generalization of the pure state formula.
Note that one parameter of the pure state disappeared when we wrote the density matrix, which is the

overall phase. Consider: The density matrix for eiφ|ψ〉 is

eiφ|ψ〉〈ψ|e−iφ = |ψ〉〈ψ| (26)

because the + and − phases cancel. This, however, is OK, precisely because that global phase has no physical
significance.

1.4 The density matrix is subjective

The density matrix has a subjective element to it. Consider: Suppose I flip a coin but do not look at the
result. What is the state of the coin? It is a mixed state: Probability 1/2 of heads and probability 1/2 of
tails. But now suppose I look and see one or the other, say heads. I know the state is actually heads, with
100% probability. And now suppose you want to know the result of the coin, but I don’t tell you. You will
still consider the state to be 1/2 heads and 1/2 tails, even though I know that the state is actually heads.
This is what I mean when I say that the density matrix can be subjective.

If youre familiar with the Bayesian approach to probability, this is the same sort of idea. There’s a
philosophy that goes with Bayes’ Theorem, and it says that probabilities simply quantify lack of knowledge
about the true state of affairs. You don’t have to believe this philosophy to use Bayes’ Thm., but regardless,
it is sensible to use probabilities if you have a situation like with the flipped coin where the outcome is
definite but unknown.
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