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1 Quantum Key Distribution

1.1 Attacks on QKD

1.1.1 Man-in-the-Middle Attack

One important aspect of BB84 or any QKD scheme is that the classical channel must be authenticated so
that Alice knows that she is talking to Bob and vice-versa. Otherwise, Eve could intercept Alice’s qubits
and respond to Alice as if she were Bob. Alice would then generate a private key shared with Eve and not
with Bob. Similarly, Eve could interact with Bob by sending him qubits and running the protocol just as if
she were Alice. She would then also share a private key with Bob. When Alice sends a message encrypted
with the one-time pad, Eve could decrypt it, read it, and re-encrypt it using Bob’s key. Thus, neither Alice
nor Bob would know that anything is wrong. However, all of this depends on Eve being able to impersonate
Alice or Bob over the classical channel.

There are classical authentication protocols that are information-theoretically secure (i.e., do not rely on
computational assumptions) but do require a pre-shared secret key. Luckily, the key required for authen-
tication is much shorter than the message, about logN bits. Thus, if Alice and Bob already have a short
shared key, QKD can be used to securely expand it to a much longer key.

Another way to use QKD is to use intermediaries to authenticate the classical messages. You must then
trust them to handle this task, but you don’t need to trust them with your private key. Finally, you could
use some computationally secure public key digital signature protocol to authenticate messages. The result
would only be computationally secure instead of information-theoretically secure, but in order to break the
system, Eve would have to break the computational security of the digital signatures while the QKD protocol
is running. She can’t copy down the ciphertext and try to break it in her own time.

1.2 E91

There are many other QKD protocols. A different but closely related one, the second one discovered (inde-
pendently of BB84) is the Ekert 91 protocol. It works as follows:

1. Alice generates N EPR pairs |00〉+ |11〉.

2. Alice transmits one qubit from each pair to Bob over the quantum channel.

3. Alice and Bob choose a random subset of pairs to perform a test on. They do a Bell inequality test on
these pairs. If the state violates the Bell inequality, they keep it and move on. If it satisfies the Bell
inequality, then they abort the protocol, as Eve might have too much information.

4. Alice and Bob agree (over the classical channel) to measure each remaining EPR pair in either the
horizontal or diagonal basis and do so, keeping the measurement result as a raw key bit.
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5. Alice and Bob perform classical error correction and privacy amplification on the raw key to get the
final key.

E91 is actually closely related to BB84. When Alice measures a perfect EPR pair in the horizontal or
vertical polarization basis, Bob’s state collapses to the same state, one of the BB84 states, just as if Alice
had created in initially and sent it rhough the channel. The main difference is in the method to verify the
error rate. In E91, Alice and Bob use Bell inequality violation as a sign on eavesdropping, as opposed to
reserving some key bits to determine the error rate.

Why does E91 work? Well, suppose Eve interacted with the EPR pair in some way that let her predict
Alice’s and Bob’s measurement results for either basis that he happens to measure in. That would be a
hidden variable which would let her predict measurement outcomes. If the state violates Bell inequalities,
we know that that is not possible and therefore the state is secure against Eve.

Moreover, notice that it does’t really matter how Alice’s and Bob’s devices work for this protocol. They
could even have Eve creating the EPR pairs and sending half of each to each player. Eve could even have
created Alice’s and Bob’s detectors, provided that the detectors can’t talk to each other or to Eve. Still, as
long as the actual measurement results violate Bell inequalities, there is no hidden variable theories and the
protocol is secure. This is now known as device-independent QKD.

1.3 Quantum Repeaters

QKD is usually implemented by sending photons either over optical fibers or through the air. However,
there is a practical limit to the distance over which one can do this. For optical fibers, that limit is maybe
200-300 km, after which loss is prohibitive (and threatens security of the protocol through the photon-
number-splitting attack). If you want to use QKD to establish a secret key with someone who is farther
away than that, there are a few different solutions people have proposed.

One is to use trusted intermediaries. If you have a network of secure key exchange locations or just a
network of outposts (e.g., branches of a bank), and each one is within range of another, making a connected
graph, then you can exchange secret keys between neighboring locations and send secret messages in hops
along the graph. The problem is these intermediaries really do need to be trusted completely, since they can
read the messages you send. If even one is compromised, your security is broken. When there are multiple
non-overlapping paths between Alice and Bob, you can reduce this risk by use the XOR of keys established
along the different paths.

A related approach is to use satellites. A satellite in Low Earth Orbit is within range of a free-space
key distribution protocol (particularly since most of the loss is near the ground, where the air is thickest).
China has a quantum satellite which has demonstrated ground-to-space QKD. If the satellite is trusted,
Alice can establish key with it, wait until it orbits to a point above Bob, who then also establishes key with
the satellite. Then there is only the single intermediary when they send messages. This approach can also
be used to communicate securely with the satellite itself. A satellite can also, in principle, be upgraded so
that it does not have to be trusted. By sending halves of an entangled pair down to two separate ground
locations, those two locations can establish key even though they might be too far apart to do so directly.

Finally, we can use a quantum repeater. The classical solution to loss is an amplifier, which essentially
measures the light and re-prepares a new stronger version of it. That will look like an eavesdropper to a QKD
protocol, but we can use a quantum error-correcting code (configured to deal primarily with loss of photons
instead of other kinds of errors). We need repeater stations spaced at appropriate intervals to correct errors,
but they don’t need to be trusted. Why? Because either they succeed or fail at correcting errors. If they
succeed, the states are just what Alice sent and the repeater doesn’t learn anything about the encoded state.
If they fail, that will look like errors or eavesdropping and Alice and Bob will discard the key.

It is actually better to use a two-way entanglement distillation protocol than a QECC. In a QECC, Alice
sends qubits to Bob but not vice-versa. If Alice and Bob try to establish an EPR pair, Bob can tell Alice
if he didn’t receive a photon. (Actually we want to do this between adjacent repeater stations, not Alice
and Bob directly.) That allows the protocol to be more efficient than a QECC, which needs to be prepared
for the possible loss of any photon in the code. Once adjacent repeater stations have EPR pairs, you can
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use entanglement swapping (basically teleportation, as you saw in an old homework) to create an EPR pair
between Alice and Bob.

2 Other Types of Quantum Cryptography

There are other applications for cryptography. Broadly speaking, cryptography is the study of how to protect
information against an adversary. The adversary might be trying to do a range of things, from gaining
unauthorized information, to altering the information, to simply trying to confuse things and make it hard
for you to operate. There are a variety of different kinds of cryptographic protocols dealing with different
kinds of tasks and adversaries. Quantum cryptography falls into two categories, either using quantum
information to somehow improve the protection of classical information, or using cryptographic tools to
protect quantum information from an adversary. QKD is an example of the first.

You can also, for instance, use classical keys to encrypt quantum information in a quantum one-time pad:
Use 2 bits (x, z) of classical key to specify one of the four Paulis Pxz. Then to encrypt a one-qubit message,
Alice applies Pxz to her qubit and sends it to Bob, who decrypts by again applying Pxz. Since P 2

xz = I, Bob
decodes exactly Alice’s qubit (in the absence of noise). But Eve doesn’t know the key, so for her the state is∑

x,z PxzρPxz = I, regardless of the state of the qubit: she has no information about the message, just like
in the classical one-time pad. To encrypt an n-qubit message, Alice and Bob can just do this on every qubit
with a different pair of classical key bits, using up a total of 2n key bits.

2.1 Secure Function Evaluation

Another example of using quantum information to (potentially) improve classical cryptography is for the
task of secure function evaluation. In the simplest version of this, there are two people, Alice and Bob, and
each has an input, x for Alice and y for Bob, that they wish to keep secret from the other. However, they
wish to compute a function f(x, y) and both learn the answer. Of course, the value of f(x, y) reveals some
information about the other input, but the cryptographic goal here is to learn nothing else about the other
person’s input other than the value of f(x, y). One crucial difference here from QKD is that Alice and Bob
don’t trust each other, whereas in QKD they were working together to try to defeat an external adversary
Eve. An example might be as follows: Alice wishes to buy a unique item from Bob and is willing to pay up
to x dollars; Bob is willing to sell for y dollars. They want to find out if a deal is possible, i.e., if y ≤ x,
without letting Alice find out the actual value of y or Bob find out the actual value of x.

There are classical cryptographic techniques that can accomplish this task with computational security.
Naturally, given the success of QKD, it makes sense to ask if quantum information can achieve two-party
secure function evaluation with information-theoretic security.

There are classical cryptographic reductions which show that you can compute arbitrary functions se-
curely given the ability to implement (somehow) certain cryptographic primitives (building blocks of proto-
cols), in particular something called oblivious transfer. These reductions still work in the quantum case, and
actually the situation is even better because in the quantum case, it is sufficient to be able to do a weaker
protocol called bit commitment. Classical bit commitment is too weak to allow all two-party secure functions
to be computed, but quantumly, it is enough.

2.2 Quantum Bit Commitment

What is bit commitment? Bit commitment consists of two stages. In the first stage, the commitment phase,
Alice sends an encrypted bit b to Bob. The commitment should have the property that Bob cannot learn
any information about b. You can think of this stage as Alice sending b written on a piece of paper and
put inside a locked box to which Bob does not have the key. In the second stage, the opening phase, Alice
sends Bob additional information to enable Bob to read the bit she sent initially. This phase should have
the security property that Alice cannot change the bit that she initially sent to Bob; she is committed to it.
You can think of this stage as Alice sending the key to the box to Bob. Bob can now open the box and see
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the bit b and Alice cannot now change her mind and cause Bob to instead read the bit as b′ 6= b. Both the
commitment phase and the opening phase can potentially involve many rounds of back-and-forth (quantum)
communication between Alice and Bob.

This is again not a protocol that is generally of too much interest by itself, but is a useful primitive to put
together into more general functions. You can come up with examples where it is directly relevant, though.
For instance, suppose Alice wants to convince Bob she can predict the stock market, but doesn’t want to
reveal her predictions unless Bob pays her first, and Bob is not willing to pay until Alice proves her claim. In
the commitment phase, Alice can commit a bit representing whether a particular stock will go up or down
in the next day. Then, the following day, they perform the opening phase and Alice reveals her prediction.
Here, it is important that Bob can’t read the bit until Alice opens the commitment, otherwise he could
invest according to the prediction without paying Alice, but it is also important that Alice can’t change the
prediction, since otherwise she could just change the bit Bob reads into whatever actually happened.

Classically, there are protocols that allow bit commitment with computational security using one-way
functions, functions for which it is computationally easy to compute the output f(x) given the input x but
hard to compute an input x which gives a particular output f(x). However, it should be clear that there is no
information-theoretically secure classical bit commitment scheme: If whatever Alice sends to Bob depends
on her committed bit, than Bob can, given enough computational power, distinguish the possibilities and
learn Alice’s bit before it is revealed. But if Alice’s commitment doesn’t depend on her bit, then she can
just choose whichever bit value she wants when she opens the commitment.

Here’s a protocol that looks like it might work to provide information-theoretically secure quantum bit
commitment: In the commitment phase, Alice sends Bob one of the four BB84 states. If Alice wants to send
a bit b = 0, she uses the Z basis, and sends either |0〉 or |1〉 at random. If Alice wants to send a bit b = 1,
she uses the X basis, and sends either |+〉 or |−〉 at random. Because Bob doesn’t know which state it is,
his density matrix for either case is

ρ = I/2 =
1

2
(|0〉〈0|+ |1〉〈1|) =

1

2
(|+〉〈+|+ |−〉〈−|). (1)

Therefore Bob can learn no information about b.
In the opening phase, Alice sends to Bob which basis she used and what her actual bit value is. Bob

measures in that basis and verifies that the state is correct. If Alice lies about the basis, there is a 50%
chance that Bob gets the other state than she sent. You can try to get better security by having Alice send
not one qubit, but many, all in the same basis but using different random bit values. When Alice lies about
the basis, the odds of getting all the bit values right is therefore small.

However, this protocol is actually not secure at all. It is true that Bob can learn nothing about Alice’s
bit after the commitment phase, but in the opening phase, Alice can open it to either value. How is that
possible?

The key insight is that Alice doesn’t have to send Bob a pure state. Instead, she could create a Bell
state |00〉+ |11〉 and send the second qubit to Bob for the commitment phase. It is still the case that Bob’s
density matrix at this point is I/2, so the situation looks to Bob just the same as before. In the opening
phase, if Alice decides she wants to open with a value b = 0, she measures her remaining qubit in the Z basis
to get 0 or 1. Bob’s state then collapses to either |0〉 or |1〉, according to Alice’s measurement result, just as
if Alice had sent that state initially. She then sends Bob b = 0 along with her measurement result, and Bob
measures and confirms that her claim is correct.

But note that
|00〉+ |11〉 = |++〉+ |−−〉. (2)

(You can check this by computing yourself.) That means that if Alice measures in the X basis and gets +,
Bob’s state is |+〉, and if she gets −, Bob’s state is |−〉, again as if that is the state Alice had sent initially.
Again, Alice can send b = 1 and the measurement result, and Bob’s measurement will confirm that she is
correct. Since Alice never gets caught, repeating with many qubits won’t help; whichever value of b she
decides, she can open the commitment that way without Bob detecting any problem.
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You can try to come up with alternative quantum bit commitment protocols, but all of them fail for
precisely this reason. In general, it can be proven that informationally-secure quantum bit commitment is
impossible.
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