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1 Entropy

Next we will talk about other kinds of manipulation one can do with quantum information. One of the basic
tools of the trade is entropy. Actually, there are many different kinds of entropy, but the most common is
the von Neumann entropy.

Definition 1. Given a density matrix ρ, the von Neumann entropy is S(ρ) = −Tr ρ log2 ρ.

The function log ρ can be calculated either by diagonalizing ρ or by using the power series expansion of
log. Note that when ρ has a 0 eigenvalue, ρ log ρ is still well defined (and 0 on the null subspace) because x
goes to 0 faster than log x.

When ρ is a thermal state, S(ρ) is equal to the thermodynamic entropy of the system. S(ρ) is also the
natural generalization of a classical concept from information theory, the Shannon entropy : Suppose ρ is
diagonal, with entries pi,

∑
i pi = 1 (since Tr ρ = 1). This represents a classical probability distribution.

Then S(ρ) = −
∑

i pi log2 pi = H({pi}). The Shannon entropy quantifies the amount of “information” in a
probability distribution, meaning, roughly speaking, the amount that you learn by seeing the outcome of a
random sample from the distribution. If the distribution is highly peaked, you don’t need to see the outcome
to have a pretty good guess at what happened, but if it is very spread out, you do.

From now on, log is always base 2.
Frequently we have a composite system composed of subsystems A,B, . . .. We may talk about the entropy

of a subsystem S(A) = S(ρA), where ρA = TrB,C,... ρ is the density matrix of the subsystem. We can also
talk about the entropy of multiple subsystems, such as S(A,B), the entropy of the density matrix traced
over all subsystems other than A and B.

The Von Neumann entropy has a number of useful properties, some of which are listed below:

1. On a Hilbert space of dimension D, S(ρ) ≤ logD. This is achieved when ρ = I/D.

2. S(ρ) = 0 iff ρ is a pure state.

3. Triangle inequality or Araki-Lieb inequality: S(A,B) ≥ |S(A)− S(B)|.

4. Subadditivity: S(A,B) ≤ S(A) + S(B). Note: Sub-additivity, it could be less if the subsystems are
correlated, and LHS can be 0 when the systems are entangled.

5. Strong subadditivity: S(A,B,C) ≤ S(A,B) + S(B,C)− S(B).

6. For a global pure state of A and B combined, S(A) = S(B).

7. S(ρ⊗ σ) = S(ρ) + S(σ).

Number 6 follows from 2 and 3: S(A,B) = 0 ≥ |S(A)− S(B)|, so S(A) = S(B).
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The Venn diagram can be a mnemonic for strong subadditivity: AB and BC have an overlap in B, which
is counted twice, so we subtract that off.

2 Compression

2.1 Classical Data Compression

Again, Alice wants to send information to Bob over a communications channel. This time the channel is
perfect (no noise) and Alice wants to minimize the number of bits she has to send over the channel. (Again,
this is useful for storage as well as communication.) If Alice’s original message is n bits long, there are 2n

possible messages she could be sending. If all of them are equally likely, she has no choice but to send all n
bits. However, if some messages are more likely than others, Alice can compress the information to transmit
fewer bits on average.

For instance, suppose there are 4 possible classical messages. A occurs with probability 1/2, B with
probability 1/4, and C and D each occur with probability 1/8. Since there are 4 messages, Alice would need
2 bits to send an arbitrary message without compression. However, suppose Alice encodes her messages,
with the more common messages being shorter. For instance, suppose she sends the following:

A −→ 0 (1)

B −→ 10 (2)

C −→ 110 (3)

D −→ 111. (4)

Then the average number of bits Alice sends for the message is

1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

8
· 3 =

7

4
. (5)

That is, Alice saves 1/4 of a bit on average by using this encoding. If she is sending only one message of
this type, there is a good chance she will end up using more than 2 bits. However, if Alice is sending many
messages drawn from this same distribution, the chances are very high she will use close to the average
number of bits for the full transmission.

Notice that in this example, there is a 50% chance that the first bit Alice sends is 0. If Alice’s first bit is
0, the second bit is the first bit of a new message, which also has a 50% chance of being 0, and if Alice’s first
bit transmitted is 1, there is a 50% chance that the second bit is 0 (when the message is B). Similarly, the
third bit has a 50% chance of being 0 regardless of the values of the first two bits. The upshot is that when
Alice sends n such messages, the compressed version is about 7n/4 bits, and all bit strings of this length
are equally likely. This is perfect compression, which can’t always be achieved, but the goal is to reassign
messages to strings to use all the possibilities as equally as possible.

In block coding, a standard type of compression scheme, Alice will collect many messages from the same
source (i.e., messages each distributed according to the same probability distribution {pi} and independent
of each other — a case known as i.i.d., independent identically distributed). For the typical sets of messages,
a set which collectively has a high probability of occurring, Alice chooses bit strings to represent those strings
of messages. She ignores the atypical messages or possibly reverts to some inefficient encoding of them.

In particular, suppose message i occurs with probability pi. Then the probability of getting a particular
sequence with ni copies of message i (running over all i) is

Prob. =
∏
i

pni
i . (6)
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The most likely case is ni ≈ pin, and in fact the probability distribution is highly peaked around this
case. Let us let the typical message strings be those with |ni − pin| = o(n). Then the total number of
typical message strings is about 2nH({pi}), with H the Shannon entropy of the distribution. Thus, this
block compression scheme needs to transmit only nH({pi}) bits to have a very high chance of successfully
transmitting all messages.

(How do we get nH({pi})? Stirling’s formula. The number of strings is about n!/
∏

i(pin)!, and log n! ≈
n log n. Thus,

log[n!/
∏
i

(pin)!] = n log n−
∑
i

pin log(pin) (7)

= n log n−
∑
i

pin(log pi + log n) (8)

= n log n− (
∑
i

pi)n log n+ nH({pi}) (9)

= nH({pi}), (10)

since
∑
pi = 1.)

Theorem 1 (Shannon’s Source Coding Theorem). Suppose we have a scheme to encode n messages from
an i.i.d. source with entropy H with asymptotic probability of failure → 0 as n→∞. Then the scheme uses
at least nH − o(n) bits. Moreover, there exist compression schemes that use only nH + o(n) bits.
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