
CMSC 657: Introduction to Quantum Information Processing

Lecture 20

Instructor: Daniel Gottesman

Fall 2024

1 Example Stabilizer Codes

1.1 CSS Codes

Example 1 (Seven-qubit code). A [[7, 1, 3]] code.
X X X X I I I
X X I I X X I
X I X I X I X
Z Z Z Z I I I
Z Z I I Z Z I
Z I Z I Z I Z

The first three generators and the last three generators are two classical codes (in this case both are the
7-qubit Hamming code) converted to a quantum code by taking 1’s in the parity check matrices and converting
them to X’s or Z’s.

Once again, the logical Paulis X and Z can be taken to be tensor products of X and Z on all qubits.
Note, though, that this is not true for all codes.

In general, we can define a classical linear code by a parity check matrix, which is basically a stabilizer
with only Paulis I or Z. We can make a QECC out of two classical linear codes C1 and C2 if C⊥2 ⊆ C1.
Codes formed in this way are known as CSS codes. For those already familiar with classical linear codes,
each row of the parity check matrix corresponds to a generator of the stabilizer. We can convert the 1s
in one of the two codes into Z’s in the stabilizer (and convert 0s to Is); for the other code, we convert 1s
into X’s. The distance of the quantum code (related to the number of errors it can correct) is at least the
distance of the smaller of C1 and C2.

1.2 Toric Code

Surface codes are another family of stabilizer codes that has emerged as one of the leading candidates for
building a large quantum computer. The original surface code is called the toric code, because the qubits in
it are naturally laid out on the surface of a torus (a donut).

1

Z Z

Z

Z

X
X

X

X

In this picture, the left and right edges are actually the same edge, as are the top and bottom edges.
Thus, the picture wraps up into a torus. The qubits sit on the edges of this graph. Each square (plaquette
in the common terminology here) corresponds to a single stabilizer element on the four qubits on the edges
of the square, and each vertex (sometimes called a star here) corresponds to a stablizer element on the four
qubits whose edges are incident on the vertex. The plaquette operators are products of Zs:

AP = Z ⊗ Z ⊗ Z ⊗ Z (1)

and the star operators are products of Xs:

Bs = X ⊗X ⊗X ⊗X. (2)

Notice that each star and each plaquette either don’t overlap at all or share exactly two edges. Thus, every
AP commutes with every Bs. Also, all the AP ’s commute with each other because they are products of Zs
and the Bs’s commute with each other because they are products of Xs.

How many physical and logical qubits does this code have? If the grid is (L+ 1)× (L+ 1) vertices, there
are a total of L2 horizontal edges and L2 vertical edges (because the top and bottom rows of the grid are
actually the same and the left a right columns are the same), for a total of 2L2 qubits. There are a total
of L2 star operators (again recalling the wrapping) and L2 plaquette operators, so it might appear we have
2L2 − 2L2 = 0 logical qubits. However, some of the plaquette and star operators are redundant, so there
are actually fewer generators of the stabilizer than this. If we take the product of all the AP operators, each
edge gets used twice, and so the product is I. Therefore, any one of the AP ’s can be written as the product
of all the others. Similarly, the product of all of the Bs operators uses each edge twice, so again one of the
Bs’s can be written as the product of the others. These turn out to be the only relationships between the
operators. Therefore, there are actually 2L2 − 2 generators, leading to 2 logical qubits.

If you think about other products of AP operators, you will see that they always form a set of closed
loops: whenever two generators overlap, the shared qubit has the Z’s cancel out, making a loop. Similarly for
products of Bs operators, although to see the loops more clearly you should take perpendicular lines through
the edges (giving the dual lattice). Importantly, these loops (for both X and Z) are always contractible
because they are formed by putting together size one loops. If you have a loop that goes all the way around
the torus (e.g., off the right end to the left end), it will automatically commute with all generators because
it crosses two edges from each star (if it is in the primal, original, lattice) or plaquette (if it is in the dual
lattice). Therefore, it is in N(S), and is actually in N(S)\S since it is non-contractible. Indeed, all elements
of N(S) \ S are (products of) non-contractible loops. The logical X and Z on the two encoded qubits
correspond to horizontal and vertical loops, Z on the primal lattice and X on the dual lattice.

One consequence of this is that the smallest elements of N(S) \ S are associated to the smallest loops
that wrap all the way around the torus. The length of a minimal loop is L, so the distance of the code is L.
The toric code is thus a [[2L2, 2, L]] code.

2

2 Fault Tolerant Gates

A fault-tolerant protocol is a set of actions that let you do quantum circuits with qubits that are encoded
with a quantum error-correcting code while still retaining the protection against errors. For instance, you
might imagine doing gates on encoded qubits by decoding, doing the gate, and then re-encoding, but this
faces two problems: First, the encoding and decoding procedures themselves can be subject to error, and
if we are not careful, an error in either of those steps could ruin the information we are trying to protect.
Second, while you are doing the gate, the state is not protected and an error then will change the logical
qubit.

Typically, a fault-tolerant protocol consists of a set of gadgets. Each gadget represents one operation that
you would want to do on logical qubits and tells you how to do that operation on encoded qubits in a way
resistant to error. There will be a gadget for each kind of fault-tolerant gate, gadgets for creating encoded
|0〉 states and maybe other specific states, and a gadget or gadgets for measuring the logical qubits. We will
also need a gadget for performing fault-tolerant error correction, since any errors that occur during error
correction itself can potentially cause a major problem if we are not careful.

A major concern for fault tolerant protocols is to prevent error propagation. For instance, if we perform
a CNOT, errors can propagate from the control to the target, but they can also propagate backwards from
the target to the control:

|0〉

|0〉��HH
|1〉 sg |0〉

|0〉��HH

��HH
|1〉

|1〉

|+〉

|+〉

��HH
|−〉

sg |+〉

|+〉��HH

��HH
|−〉

|−〉

One error could become two errors in a single block of the code, which might be more than the code can
correct. A solution is to use transversal gates — gates which only interact qubits with corresponding qubits
in other blocks of the code. For instance, the transversal CNOT looks like this:s s s

ggg
The 7-qubit code is particularly nice for fault tolerance because we can do a lot of gates transversally,

including CNOT, Hadamard, Rπ/4. The logical CNOT and Hadamard are both implemented as tensor
products of 7 CNOTs or Hadamards. The logical Rπ/4 is actually the tensor product of 7 R−π/4 gates
instead. Unfortunately, these gates are not universal. In fact, they generate a subgroup of the unitary group
called the Clifford group, which consists of all unitaries that conjugate the Pauli group into itself:

Cn = {U |UPU† ∈ Pn ∀P ∈ Pn}. (3)

The Clifford group can be efficiently simulated on a classical computer, but is still very useful for dealing with
quantum error-correcting codes. For instance, the encoding circuits for a stabilizer code use just Clifford
group elements.

To get a universal set of gates, we need additional tricks (but it is possible). One trick is to use quantum
teleportation.

3

|ψ〉

|00〉+ |11〉

Alice

Bob

�
�

@
@

Bell
�H

�H x

z

??
P U U |ψ〉

=

|ψ〉

�
�

@
@

Bell
�H

�H

U

x

z

??
UPU† U |ψ〉

Here, Alice and Bob are both parts of the same computer, but all of their qubits are encoded in a quantum
error-correcting code. For certain gates U (in a set called C3, which includes the Rπ/8 gate), UPU† is a
Clifford group element, and the Bell measurement also uses just Clifford group operations. Therefore, if
we have the capability to do fault-tolerant Clifford group operations and fault-tolerantly prepare the state
|φ〉 = (I ⊗ U)(|00〉 + |11〉) of two logical qubits, then we can do the gate U fault-tolerantly. This state |φ〉
is known as a magic state, and preparing it is not easy. One common solution is to make many encoded
|φ〉 states in a non-fault-tolerant way and then compare them against each other to produce more reliable
copies, a process known as magic state distillation. Since the Clifford group plus Rπ/8 forms a universal set
of gates, this gives us enough gates to do any quantum computation reliably.

4

