
CMSC 657: Introduction to Quantum Information Processing

Lecture 2

Instructor: Daniel Gottesman

Fall 2024

1 Tensor Product, Measurements, and Density Matrices

1.1 Unitaries and Tensor Product

How do unitaries work with the tensor product? Let us look at an example with two quantum gates we will
discuss later,
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√
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√

2 −1/
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)
, U2 =

(
1 0
0 eiπ/4

)
. (1)

Let us calculate U1 ⊗ U2.
Recall that the basis for the tensor product of two qubits is |00〉, |01〉, |10〉, |11〉 (in order). (Note that

|00〉, |0〉|0〉, and |0〉 ⊗ |0〉 are three ways of representing the same state.). U2 is acting on the second tensor
factor, so it addresses the lower-order bit. If we have the input state |00〉, then we use the entries in the left
column (|0〉〈0| and |1〉〈0|) of U2, which are 1 and 0. Thus I ⊗ U2 applied to |00〉 gives us just |00〉 again.

U1 addresses the higher-order bit, so on |00〉, we again use the left column, giving us 1/
√

2(|00〉+ |10〉).
Putting this together with the action of U2, we find that U1 ⊗U2|00〉 = 1/

√
2(|00〉+ |10〉). This gives us the

left column of the matrix for U1⊗U2: 1/
√

2, 0, 1/
√

2, 0. Following the same procedure for the other columns
tells us the full matrix:
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 (2)

We can short-circuit this calculation by promoting each of the entries of U1 into an identity matrix (which
gives us the matrix for U1 ⊗ I) and then multiplying each by U2:

U1 ⊗ U2 =

(
1/
√

2U2 1/
√

2U2

1/
√

2U2 −1/
√

2U2

)
(3)

You can also calculate this using bra-ket notation, and you will get a chance to do that on the problem
set.

1.2 Measurements

We need a way of converting quantum states to classical ones, i.e., to get information out from a quantum
system. This is provided by measurement. The simplest kind of measurement is a complete Von Neumann
measurement, where we pick an orthonormal basis {|i〉} and get one of those states as the outcome. Different
basis states have different probabilities, depending on the state. In particular, the probability of outcome i
when the state |ψ〉 is measured in the basis {|i〉} is

Prob(i) = |〈ψ|i〉|2. (4)
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This is known as Born’s rule. Thus, if we expand the state |ψ〉 in the basis as

|ψ〉 =
∑
i

αi|i〉, (5)

then
Prob(i) = |

∑
j

α∗j 〈j|i〉|2 = |αi|2. (6)

Note that this is always a real number between 0 and 1, and because the state is normalized,∑
i

Prob(i) =
∑
i

|αi|2 = 1. (7)

Thus this distribution does indeed form a probability distribution. Now you can see why we wanted the states
to be normalized — so that the probability interpretation made sense. Moreover, notice that the projective
phase freedom, a global phase of eiφ, has no affect on the probabilities since it changes αi → αie

iφ, which
has the same absolute value. It also tells us why we need unitary evolution to preserve the inner product,
because that also preserves probabilities. Otherwise, we would have some state that changed norm and
became non-normalized, which would ruin the interpretation of measurement as providing probabilities for
different outcomes.

We see that if we measure a basis state in the same basis, we get a deterministic outcome, and a state which
has most of its amplitude on one basis state will usually give that measurement outcome, but occasionally
something else. Like a probability distribution, a quantum state can weight different basis states differently,
but the fact that the amplitudes can be complex numbers rather than positive real numbers makes a big
difference, allowing for interference, a genuine quantum effect that we will discuss later when we do quantum
circuits.

The possibility of interference means that the relative phase between parts of a superposition does matter.
That is, the states |+〉 = |0〉+ |1〉 and |−〉 = |0〉 − |1〉 are very different states. (In fact, their inner product
is 0 – they are orthogonal states, and a measurement in the |±〉 basis can tell us which we have.) The
difference matters a lot, in fact, and is arguably the source of all the difference between classical and
quantum computation. But the state |1〉 − |0〉 = −|−〉 is the same physical state as |−〉.

The other thing about quantum measurements is that they generally change the state of the system.
Regardless of the state |ψ〉 before the measurement, if we make a complete measurement and get the outcome
|i〉, the state after the measurement is always |i〉. We sometimes say that the state has collapsed to a basis
state. Because the state is now a basis state, if you repeat the measurement in the same basis, you will get
the same result (in the absence of error). But note that if you do a measurement in a different basis, you
need not get a deterministic outcome.

Also, note that any information about the other branches of the superposition is also gone. Measurement
in the |0〉/|1〉 basis has erased the distinction between |+〉 and |−〉: They both have probability 1/2 (when
normalized) of giving measurement outcome 0 and outcome 1.

We can also have a partial Von Neuman measurement, where we don’t resolve all basis vectors. In
particular, a partial Von Neumann measurement is a set of projectors Πi (which means that Π2

i = Πi) on
orthogonal subspaces (which means ΠiΠj = 0 when i 6= j). We should also have that the whole Hilbert
space is covered by projectors ∑

i

Πi = I. (8)

Then the probability of outcome i when we make this measurement on state |ψ〉 is

Prob(i) = 〈ψ|Πi|ψ〉. (9)

The probabilities sum to 1 because the projectors do. The special case of a complete measurement is when
Πi = |i〉〈i|. Note that this satisfies the conditions for a partial von Neuman measurement and that the
probability is consistent with the complete measurement:

〈ψ|(|i〉〈i|)|ψ〉 = 〈ψ|i〉〈i|ψ〉 = |〈ψ|i〉|2. (10)
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This is true because 〈ψ|φ〉 = 〈φ|ψ〉∗.
When the partial measurement is not a complete measurement, then we can write the projectors as sums

of basis vectors:
Πi =

∑
k∈Si

|ik〉〈ik|. (11)

Then
Prob(i) =

∑
k∈Si

|〈ψ|ik〉|2, (12)

which is the sum of the probabilities we would get if we made a complete measurement in the basis |ik〉.
However, in the case of a partial measurement, the state does not completely collapse to a basis state.
Instead, we get the minimal change that is consistent with a state that definitely satisfies the projector Πi.
Conditioned on the outcome i, the residual state after measuring the initial state |ψ〉 is

Πi|ψ〉/
√
〈ψ|Πi|ψ〉. (13)

Here,
√
〈ψ|Πi|ψ〉 is just the normalization of Πi|ψ〉, so the residual state is the outcome of the projector

normalized.
One other important special case of the partial measurement is when the Hilbert space is a tensor product

A⊗B and the measurement is a complete measurement on one tensor factor, let’s say A. Then the projectors
are Πi = |i〉A〈i|A ⊗ IB . Here’s an example of how this works in practice:

Suppose we start with the state

|ψ〉 =
1√
3

(|00〉+ |01〉+ |10〉) (14)

and we measure the first qubit in the 0/1 basis. Then the 0 outcome has projector Π0 = |0〉〈0| ⊗ I, and

Prob(0) =
1

3
(〈00|+ 〈01|+ 〈10|)(|0〉〈0| ⊗ I)(|00〉+ |01〉+ |10〉) (15)

=
1

3
(〈00|+ 〈01|+ 〈10|)(|00〉+ |01〉) (16)

=2/3. (17)

We have Π0|ψ〉 = 1√
3
(|00〉+|01〉), so the post-measurement state conditioned on a 0 outcome is 1√

2
(|00〉+|01〉).

The 1 outcome has probability 1/3 and the post-measurement outcome is |10〉, the only term in the state
that is consistent with getting a 1 on the first qubit.

A Von Neumann measurement is also called a projective measurement, and a complete projective mea-
surement is called a rank 1 measurement because all of the projectors used in it are matrices with rank
1.

1.3 Density Matrices

Since quantum states have some similarity to probability distributions and can actually be converted into
probability distributions by measurements, it is helpful to have a formalism that talks directly about both.
That formalism is the density matrix notation.

A density matrix can be used to describe both the pure states that we have been discussing so far and
mixed states, which are probabilitistic mixtures (an ensemble) of pure states. Of course, a pure state is
also a probabilistic mixture of sorts, with 100% of a single state. In general, given a mixed state which has
probability pi of being state |ψi〉, we write the density matrix as

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
ab

ρab|a〉〈b|. (18)
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The last form is the explicit matrix representation and we can get it from the middle form by expanding
each |ψi〉 in the basis:

|ψi〉 =
∑
a

ci,a|a〉. (19)

Then
ρ =

∑
i,a,b

pici,ac
∗
i,b|a〉〈b|, (20)

so ρab =
∑
i pici,ac

∗
i,b.

Note that mixed quantum states are a generalization of the notion of a classical probability distribution.
If all the states |ψi〉 = |i〉 are basis states in a particular standard basis, then the density matrix is diagonal:
ci,a = δi,a, and ρ =

∑
i pi|i〉〈i|. The diagonal elements are the vector of probabilities.

Also, note that superposition is distinct from a classical mixture. For instance, consider the mixture

ρm = |α|2|0〉〈0|+ |β|2|1〉〈1|. (21)

This has state 0 with probability |α|2 and 1 with probability |β|2. Compare to the superposition

|ψs〉 = α|0〉+ β|1〉. (22)

This is a natural comparison to make because if we measure |ψs〉 in the standard |0〉, |1〉 basis, we again get
0 with probability |α|2 and 1 with probability |β|2.

Let us calculate the density matrix ρs for |ψs〉. We find

ρs =|ψs〉〈ψs| (23)

=(α|0〉+ β|1〉)(α∗〈0|+ β∗〈1|) (24)

−|α|2|0〉〈0|+ αβ∗|0〉〈1|+ βα∗|1〉〈0|+ |β|2|1〉〈1|. (25)

The diagonal terms are the same as ρm, but there are also off-diagonal terms αβ∗|0〉〈1| + βα∗|1〉〈0|. The
density matrix is different.
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