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1 Ion Traps, Continued

1.1 Two-qubit ion traps and gates

Recall that the movement of a single ion in a linear trap is a harmonic oscillator, with Hamiltonian H =
p̂2/2m+ 1

2mν
2x̂2.

The classical harmonic oscillator vibrates according to a sine function with period ν. If you solve
Schrödinger’s equation for a quantum harmonic oscillator, you get an infinite set of equally spaced en-
ergy levels |0〉, |1〉, |2〉, . . . with energies ~ν(n+ 1

2 ). We like to write down creation and annihilation operators
a† and a. They have the effect of moving the state up or down an energy level:

a|n〉 =
√
n|n− 1〉 (n > 0) (1)

a|0〉 =0 (2)

a†|n〉 =
√
n+ 1|n+ 1〉. (3)

The a and a† are not unitary. Instead
a†a|n〉 = n|n〉 (4)

is a number operator that returns the number of the eigenstate. We like to think of n as representing the
number of quantum excitations in the harmonic oscillator, so a† and a create and destroy these quanta;
thus their names. We can rewrite the Hamiltonian of the harmonic oscillator in terms of the creation and
annihilation operators

H = ~νa†a+
1

2
~ν. (5)

Here, ν is the frequency of the oscillator.
For the phonon modes of the ion trap, there are many atoms, so the solutions are more complicated than

for a single simple harmonic oscillator. Each mode of motion is separately an almost harmonic oscillator and
can be described as above. The different modes have different frequencies and can interact separately with
the atoms.

Let us focus on the center of mass mode. It is an approximately harmonic oscillator, at least for low-
amplitude oscillations, with Hamiltonian

Hphonon = ~νa†a, (6)

as discussed above.
We can then look at the joint energy levels of phonon plus one atom, the Hamiltonian Hatom +Hphonon.

At the moment, the electron and the phonon do not interact. Their states form a ladder of joint states |e, n〉
and |g, n〉.

1



|g, 0〉

|e, 0〉
6

E

���
�:

~ν

Z
Z
Z
Z~

~ω

n = 0 n = 1 n = 2

|g, 1〉

|e, 1〉

|g, 2〉

|e, 2〉

Let
~ω = E − ~ν. (7)

When we shine a laser with frequency ω, we get an interaction Hamiltonian of the form

Hlaser = J(eiωt|g〉〈e| ⊗ a† + e−iωt|e〉〈g| ⊗ a). (8)

It couples the energy levels |e, n〉 and |g, n+ 1〉. As before, if we turn the laser on for some time, it induces
an oscillation between these two levels. But note that |g, 0〉 does not couple to anything. This idea is behind
the two-qubit Cirac-Zoller gate.

In particular, we will use the phonon mode and an additional energy level |e′〉 with energy E′. It is not
unstable like |f〉, but does not need to be as stable as |e〉 and |g〉 since we are not staying in it for long. Let
ω′ = (E′ − E)/~− ν.

At the start of the gate, the phonon mode is |0〉p, the vacuum state. I will use subscripts 1 and 2 for the
ions 1 and 2 and subscript p for the phonon mode. We do the following pulse sequence:

1. Do a π/2 pulse on ion 1 with frequency ω. This takes |e〉1|0〉p 7→ |g〉1|1〉p, while |g〉1|0〉p 7→ |g〉1|0〉p.

2. Do a π pulse on ion 2 with frequency ω′. Since ω′ is only resonant with the transitions |e〉2|n〉p to
|e′〉2|n− 1〉p, this laser does nothing if the state is |e〉2|0〉p, |g〉2|0〉p, or |g〉2|1〉p, but if the state is
|e〉2|1〉p, it acquires a phase −1 (which is no longer a global phase, since it is relative to those other
states that did not get the phase).

3. Undo step 1 with a −π/2 pulse, again with frequency ω.

The last step always returns the phonon to |0〉p (in the absence of error). In the meantime, nothing has
happened in any step if the first ion is |g〉1 and nothing happens in step 2 if the second ion is |g〉2 (which
means that the first and third steps cancel with no overall effect). The only time anything changes is if both
ions are excited |e〉1|e〉2, in which case we have a phase −1.

Thus, we get a controlled-phase gate C − Z:

|g〉1|g〉2 7→ |g〉1|g〉2 (9)

|g〉1|e〉2 7→ |g〉1|e〉2 (10)

|e〉1|g〉2 7→ |e〉1|g〉2 (11)

|e〉1|e〉2 7→ −|e〉1|e〉2. (12)

This, along with single-qubit gates, is universal (condition 4). You can get a CNOT from it using
Hadamards:

CNOT = (I ⊗H)C − Z(I ⊗H). (13)

Note that initialization is more challenging for the two-qubit ion trap. Note only do we need to get
the atoms into their ground states, but we need the phonon in the vacuum mode. This can be done via
“sideband cooling”: If we put all atoms in |g〉 and do a π/2 pulse at frequency ω, the state goes from |g〉1|n〉p
to |e〉1|n− 1〉p. Then we can reset atom 1 to |g〉 and repeat, sucking all of the phonons out of the mode.
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1.2 Errors

For ion traps, the storage and single-qubit gates are quite robust. There can be errors from spontaneous
emission of the |e〉 state into the |g〉 state, but the energy levels selected for qubits are chosen so that this
is quite rare. More important are timing or frequency fluctuations in the lasers controlling the qubits, and
stray magnetic fields can shift the energy levels, causing phase errors.

The two-qubit gates have a higher error rate, about 0.1% currently in the best ion trap quantum comput-
ers. There are the same issues as with single-qubit gates, but also spontaneous emission from the |e′〉 state
can cause errors. The biggest source, however, is usually problems with the phonon mode. The Cirac-Zoller
gate is particularly susceptible to this since it requires the requires the phonon to start in exactly the |0〉
(vacuum) state, which is challenging. Today people mostly use other gate methods which are a bit more
robust, but it is still the case that the phonon is a major source of errors.

1.3 Scaling up

There is a limit to how many ions you can put in one trap. As you put more and more ions in the trap, the
phonon modes start to crowd together if you make the trap bigger and the confinement weaker or the ions
get too close to each other and it becomes difficult to illuminate them one-by-one. Therefore, we will need
some way of combining different ion traps to make a big quantum computer. There are two basic ideas.

The first is to physically move the ions around. The leading devices today do this by trapping many
ions using the same trap but separating them. They can be moved together into an interaction region in the
middle of the trap by manipulating the trapping fields.
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This allows more ions in a trap with the ability to still interact in controllable groups, but eventually
it will still hit a limit. One option to scale up further is to store the ions in separate but linked trapping
regions and bringing them together to interact.
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A second strategy is to link separate ion traps with light. Put the ion trap in an optical cavity, basically
a tiny box with extremely good mirrors that cause light to stay trapped as well for relatively long periods
of time (for light). The box has a size that is a multiple of a particular optical wavelength that interacts
well with the atom. Individual particles of light are called photons and they have a mode in the optical
cavity with basically the same properties as the phonon mode before. This photon mode can interact with
the atom, but if we pick an optical cavity whose mirrors are not perfect, occasionally the light can leak out.
Take two such traps and put the leaking photon modes through a beam splitter. This gives us an EPR pair
between the photon modes of two cavities. This can be interfaced with the ions trapped in the cavities to
make an EPR pair between ions. Then use teleportation.

3



�� �� �� ��g g g g g g�
�
��
�
�
��

@
@

@I
@

@
@I

Ion traps with a single atom have decoherence times on the order of tens of seconds, but for a quantum
computer, there are other dominant decoherence mechanisms due to the gate operations. The largest ion
trap computers today are on the order of 10s of qubits. Error rates have been shown as low as about 10−3

for a two-qubit gate.
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