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1 Implementations of Quantum Computers

1.1 DiVincenzo Criteria

What properties does a system need to make it a good candidate for building a quantum computer? The
main ones were laid out by David DiVincenzo and are widely known as the “DiVincenzo Criteria.” They
are not actually either sufficient nor are all of them strictly necessary for building a quantum computer, but
they do provide a good guide, and most of the leading candidates for building quantum computers satisfy
them:

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000 . . .〉.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

6. The ability to interconvert between stationary and flying qubits.

7. The ability to faithfully transmit flying qubits between specified locations.

The last two are only needed if you want to do quantum communications and interface the quantum
computer with the communications system. The first five are for building a computational device.

1.2 Ion Traps

The first type of implementation we will discuss uses ions — single atoms missing an electron each — as
qubits. It is the approach used by the companies IonQ and Quantinuum. IonQ currently has a 36-qubit
quantum computer as their largest public device and Quantinuum has a 56-qubit device.

1.2.1 Ions

In ion traps, one qubit = one atom, so first, let us talk about atoms. Atoms have a nucleus made of protons
and neutrons which is positively charged, and lighter electrons which are negatively charged. Protons and
electrons have the same magnitude of charge, so an atom is neutral (no electric charge) if the number of
electrons and protons match. Electrons are a type of particle known as a fermion, which satisfy the Pauli
exclusion principle. This means that no two electrons can be in exactly the same state. It is a vaguely
reasonable approximation to say that the electrons act independently exact for the Pauli exclusion principle
and that therefore, we can write down a Hamiltonian for a single electron bound by the nucleus. It has a
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discrete set of energy levels (but infinite; they get closer together as the energy goes up) — eigenstates of
the Hamiltonian — and at low temperatures, the electrons bound to an atom fill up the energy levels from
the lowest on up.

The qubit in an ion trap quantum computer is an atom, generally a group II atom (from the second
column of the periodic table). Each row of periodic table corresponds to a significant leap in energy between
the eigenstates being filled and atoms are more stable when these shells of electrons are completely full. (This
heuristic explains a great deal of chemistry just by itself.) A group II atom has two electrons in its outer
shell, so it has a tendency to lose electrons. For quantum computing purposes, it is useful to have atoms
which are ionized once (meaning they lost one electron), giving them charge +1 and leaving one electron in
the outer shell. Because the ion is charged, it interacts with electric and magnetic fields and can be trapped
in this way. (There are different trap designs.)

We can basically ignore the other electrons. They will fill the lower-lying shells and remain there, as
there is a big energy cost for any of them to leave. However, the remaining outer shell electron can be more
easily excited into different energy levels. We often draw pictures representing the different possible levels,
e.g.:

|g〉

|e〉
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The horizontal axis in this kind of drawing doesn’t always have a definite meaning. It just helps to separate
out different kinds of levels so we can see better. Sometimes it might represent some other property (such
as angular momentum) that distinguishes different levels. The specific energies of the energy levels depend
on the detailed physics of the atom (no longer making simplifying approximations) and energy levels have
other properties associated with them. One important factor is the energy difference between levels, and
there may be other constraints (“selection rules”) that limit when the electron can move between levels. The
arrows represent interesting transitions between levels.

In the absence of any other consideration, electrons tend to drop to the lowest open energy level. This
is because room temperature is still “cold” from the perspective of atomic energy levels, so the amount of
energy in the atom in a thermal state is not enough to excite the electron to higher energy levels. Energy
is conserved, so to drop down to a lower energy level, the electron needs to emit a photon, a particle of
light. However, because of the selection rules, it might not be possible for an electron to go from a particular
excited state to the ground state directly or might require more than one photon. Excited states that have
this property can therefore be highly stable, lasting for minutes or even longer, which is enough time to do
105 or more quantum gates.

The qubit is then the state of the outer shell electron. Two particularly stable states are chosen to be
the computational states, |0〉 = |g〉 the ground state and some excited state |1〉 = |e〉. This gives us the
first DiVincenzo criterion — multiple ions means multiple qubits and the ground and excited states are
well-defined with specific known energies. Other excited states will also be relevant for some operations.

1.2.2 One-qubit gates in an ion trap

We control the qubit via lasers shining on the atom. Quantum particles of light are called photons, and
photons, in contrast to electrons, are bosons. This means that unlike fermions, they prefer to be in the same
state. A laser is a Bose condensate of light, with many photons all in the same state. When you shine a
laser on an atom, the atom can absorb one of the laser’s many photons to excite the outer shell electron
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to a higher energy level, or the Bose statistics can induce the atom to emit an photon into the laser mode,
joining the many photons already there.

While discussing the ion trap, we will consider the laser to be a classical object and just write down a
Hamiltonian for the atom. Let us first consider the case of a laser whose frequency ω = E/~ is equal to the
energy difference E between the ground and excited states and consider only the two computational states.
It is important that the energy difference between the |0〉 and |1〉 states be different from the difference
between either of those states and any other electronic state so that other states are not accidentally excited
by this laser. The Hamiltonian is then approximately

H = Hatom +Hlaser, (1)

with

Hatom = E|e〉〈e| (2)

Hlaser = J(eiωt|g〉〈e|+ e−iωt|e〉〈g|). (3)

Recall that ω = E/~ is the frequency of the laser. The phase factors in Hlaser appear because the laser is
absorbing or emitting energy into the atom, so the phase of the laser changes according to the amount of
energy. We can assume that the ground state energy is 0.

This coupling induces oscillations over time between ground and excited, which are eigenstates of Hatom

but not of H. H is just a 2× 2 matrix

H =

(
0 Jeiωt

Je−iωt E

)
. (4)

This is a little more complicated than the Hamiltonians we have discussed previously because of the explicit
time-dependence. The Schrödinger equation gives us for a state |ψ(t)〉 = α(t)|g〉+ β(t)|e〉,

i~(α′(t)|g〉+ β′(t)|e〉) = Jeiωtβ(t)|g〉+ (Je−iωtα(t) + Eβ(t))|e〉. (5)

A solution for |ψ(0)〉 = |g〉 is

|ψ(t)〉 = cos(Jt/~)|g〉 − i sin(Jt/~)e−iEt/~|e〉, (6)

giving

i~α′(t) =− iJ sin(Jt/~) = Jeiωtβ(t) (7)

i~β′(t) =J cos(Jt/~)e−iEt/~ − iE sin(Jt/~)e−iEt/~ (8)

=Jeiωtα(t) + Eβ(t). (9)

In particular, if the laser is on for a time t, the probability of finding the state |g〉 afterwards is cos2(Jt/~).
This is known as a Rabi oscillation.
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However, decoherence will cause the fringes to decay: Suppose the environment measures the state at time
t which is not one of the peaks. This is a version of an error source known as dephasing and results in the loss
of relative phase information between the |0〉 and |1〉 states. We get a mixture of g vs. e, then the oscillation
continues from there, leading to an oscillation with lower peaks. Really this is a continuous process, so the
peaks gradually get smaller with time. How long the decay takes is a measure of the decoherence time.

In ion traps, the atoms are very well insulated from the environment, so decoherence is low. The same
technology used for ion traps is also used to make atomic clocks. We still get dephasing due to interactions
with stray atoms nearby, but that is rare. There is also dephasing due to field fluctuations in the magnetic trap
holding the atoms, which changes the energy levels slightly, leading to unwanted phase shifts. Spontaneous
emission from excited to ground causes a different type of error known as amplitude damping, but that is
much rarer in ion traps. Because of the low decoherence rate, you get 104 or more periods before seeing
significant decay. This is why ion traps are a good candidate for quantum computing, and in particular why
they satisfy condition 3 of the DiVincenzo criteria.

The Rabi oscillations also give us an opportunity to do single-qubit gates. By turning the laser on for
an appropriate period of time, we can do a bit flip or a gate creating superpositions such as the Hadamard
gate. The duration of a pulse can be named by the angle it goes through. Thus, a bit flip is a π/2 pulse
and a Hadamard is π/4 pulse. Note that a π pulse restores us to the initial state, but with global phase −1.
(This will be important later.)
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Diagonal phase gates are in a sense even easier. If the laser is off, time evolution is just e−iEt/~|e〉〈e|. That
is, |e〉 acquires over time a relative phase compared to |g〉. By keeping track of time, we can do whichever
phase gate we want. Note that this is happening whether we want it to or not, so we always need to keep
track of time with every gate to make sure we know the correct relative phase of |g〉 and |e〉.

(Actually, in a multiple-qubit ion trap computer, this won’t work for diagonal gates unless you want to
apply the same phase gate to every qubit. But by fiddling with the relative phase of the lasers on different
qubits, you can accomplish the same thing.)

Rotations about two axes let us get any single-qubit rotation using Euler angles.

1.2.3 Measurement and preparation

The usual way measurement is done is to use an additional excited state |f〉. Unlike |e〉, |f〉 has a short
lifetime and rapidly decays via spontaneous emission to |g〉. Suppose we shine a bright laser on the atom,
with a frequency resonant to the gf energy difference.

|g〉

|e〉

|f〉
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If the state of the atom is |g〉 initially, it will now rapidly cycle between |g〉 and |f〉. Sometimes, while
in |f〉, it will spontaneously decay back to |g〉 rather than the stimulated decay that is part of the Rabi
osciallation between |g〉 and |f〉. This emits light in a different direction, which can be picked up by a
photodetector. On the other hand, if the state of the atom was |e〉, the laser doesn’t interact with the atom,
so no light is emitted away from the laser. Consequently, we have a measurement in the |g〉, |e〉 basis. This
measurement is extremely accurate (condition 5).

Once we know whether we have |g〉 or |e〉, we can easily reset the qubit to |g〉 if it is not there already,
using a resonant laser pulse (condition 2).

1.2.4 Two-qubit ion traps and gates

We can put multiple ions in the same linear ion trap, which strongly confines the ions except in one direction,
and weakly confines the ions in that direction. Because they are all positively charged, they repel each other
and form a line. If one of them moves, it pushes the others. When atoms get too far from each other,
the trap pushes them back together. Therefore, the natural motion is a combination of different kinds of
oscillation, broken down into normal modes that repesent different kinds of motion that can be analyzed
separately. Because these are single atoms, the oscillation is quantized and can be described via phonon
modes. A phonon is a quantum unit of vibration. In particular, the same phonon mode is shared by all the
atoms.

g g g g g
- - - - - center of mass mode

� � - - breathing mode

Let us a take a short digression to talk about harmonic oscillators. They show up in many places in
physics (and will show up again when talking about other implementations). One way they can arise is from
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a Hamiltonian H = p̂2/2m + 1
2mν

2x̂2. The classical version of this Hamiltonian is a mass on a spring. As
the spring stretches or shrinks from its default position (x = 0), there is a restoring force which is linear in
the distance from x = 0, resulting in a quadratic energy. It shows up many places because if you have a
potential V (x), you can write it as a Taylor series V (x) = V (0) + V ′(0)x+ 1

2V
′′(0)x2 + . . .. When a particle

is at a local energy minimum, V ′(0) = 0, so the first non-constant term is the x2 term, and when it is close
to the minimum, the higher order terms are smaller.
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