
CMSC 657: Introduction to Quantum Information Processing

Lecture 13

Instructor: Daniel Gottesman

Fall 2024

1 Grover’s algorithm continued

1.1 Grover’s algorithm with multiple marked elements

When there are t marked elements, we can follow essentially the same analysis.

|S〉 =
∑

x|O(x)=1

|x〉 (1)

|T 〉 =
∑

x|O(x)=0

|x〉 (2)

|U〉 =
∑
all x

|x〉 = |S〉+ |T 〉. (3)

Now

cos θ =
1√

N(N − t)
〈U |T 〉 =

√
N − t
N

(4)

sin θ =

√
t

N
. (5)

We can run the same algorithm, but because θ is bigger, we should stop sooner, specifically after M ≈
(π/4)

√
N/t iterations. If we stop then, we will with high probability get a random x that satisfies O(x) = 1.

There is no real way to control which one we get (since we don’t know what they are).
If we know how many solutions there are, this works fine. But what do we do if we don’t know how many

solutions there are? We need to stop at the right time or the success probability will decrease. We don’t
have to know the exact number of solutions — if we have close to the right number, we will still get an O(1)
probability of success, although it won’t be very close to 1. That is sufficient, since we can run it a O(1)
times and check the measured answer each time. The odds are good we will eventually get a marked element.
To get to this point, we need some method of approximately counting the number of marked elements.

Let us imagine running Grover’s algorithm for a variable time and plotting the amplitude of |S〉. It
oscillates with period π

√
N/t. We can find t by finding the period. We already know how to do that: use

Shor’s algorithm!
Thus, what we want to do is to create an ancilla

∑
k |k〉 and run Grover’s algorithm for k steps. Then

do the Fourier transform on the ancilla and measure it, giving an estimate of the period.

1



|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

H

H

H

H

H

H
�
�
�
�

G(k)

F
�

�

�

H

H

H

We should let k run from 0 to O(
√
N/s) queries if we think there are at least s solutions. That way, we

will be sure of getting at least one period in the worst case, the minimum for us to get any kind of estimate
of the period. If you want a more accurate count, you can also run for longer, although it turns out that if
you want an exact count, you need to use O(N) queries in total. After counting, we can then run Grover’s
algorithm for roughly the correct number of steps to get a marked item.

If you just do this and s is much less than the true number t of solutions, you will end up using many
more than O(

√
N/t) queries. We can get around this by first running the approximate counting algorithm

with s = N/2. If the true number of solutions is much less than this, the amplitude of |S〉 will basically
be flat (and very small), and period finding will probably find a period of 0 (which is what you get if you
take the Fourier transform of a constant function). If that happens, run the approximate counting algorithm
again with s = N/4, then N/8, and so on to s = N/2m. Once we get s ≈ t, we will likely find a non-zero
period and can then find a marked element. In total, the number of queries we use is

O

logN/t∑
m=1

2m/2

 = O
(

2(logN/t)/2
)

= O(
√
N/t). (6)

1.2 Example: Finding Collisions

As mentioned, Grover’s algorithm is quite flexible and can be used to solve things which are not quite as
straightforward as an unordered search. As an example, consider finding collisions: Given a function f(x)
which is 2–1; that is, for all y, there are exactly two values (x0, x1) of x such that f(x0) = f(x1) = y.
The goal is to find a collision, that is any pair (x0, x1) such that f(x0) = f(x1). The collision problem
is important, for instance, for breaking security of cryptographic hash functions. It can also be analyzed
rigorously by consider f to be an oracle.

Classically, the oracle version of this problem takes Θ(N1/2) queries when there are N possible inputs.
This follows from birthday-paradox arguments. Quantumly, it takes Θ(N1/3) queries. The algorithm to
accomplish this uses Grover’s algorithm as a subroutine.

Specifically, first make N1/3 classical queries to the oracle, retrieving N1/3 distinct values of f(x) along
with the appropriate input. (If two of these f(x) values happen to be the same, then we can return those as
a collision.) Make a list of those values. Then, on the remaining N −N1/3 values of x, search using Grover’s
algorithm where an element x is marked if f(x) = f(x′) for some x′ on the list. There are exactly N1/3

marked elements in this case, so Grover’s algorithm takes a time O((N/N1/3)1/2) = O(N1/3).
Note that Grover’s algorithm by itself doesn’t use much space, only O(logN), but this application to the

collision problem uses N1/3 space to store the initial list.

2



1.3 Amplitude Amplification

Another application of Grover’s algorithm is as a subroutine of other quantum computations. Suppose we
have some unitary U which acts as follows:

U |0 . . . 0〉 =
√

1− ε|ψ〉+
√
ε|φ〉 = |U〉. (7)

Here 〈ψ|φ〉 = 0, and we want to produce the state |φ〉 more reliably.
Suppose we have some efficient measurement M which can reliably distinguish between |ψ〉 and |φ〉. (A

measurement always exists since they are orthogonal, but it might be hard to implement efficiently.) We
can then purify M into a unitary V putting the result in an ancilla qubit, followed by a measurement of the
ancilla (1 indicating |φ〉). Then V followed by Z on the ancilla followed by V † gives a phase of −1 to |φ〉
and none to |ψ〉. This looks a lot like the (−1)O operation we had before.

We can also do the equivalent to (−1)U : If we have |U〉 and perform U† on it, we get back |0 . . . 0〉. A
phase shift conditioned on all 0’s, followed by U again, will thus give a −1 phase to |U〉 and no phase to any
orthogonal state.

We can then run Grover’s algorithm with alternating (−1)O and (−1)U steps like this to induce a
rotation in the |U〉/|φ〉 plane, resulting in an increase in the amplitude of |φ〉. When ε is small, we can get
the amplitude of |φ〉 to be close to 1 in Θ(1/

√
ε) iterations.

1.4 Lower Bound on Unstructured Search

There is also a lower bound proven for the quantum query complexity showing that the quantum query
complexity is Ω(

√
N). Thus, the quantum query complexity is exactly Θ(

√
N). In fact, it turns out that

the constant in Grover’s algorithm is optimal as well.

2 Hamiltonians and the Schrödinger Equation

The next (and last) quantum algorithm we will discuss is one of the first ones invented, and yet remains
one of the most important practically. Historically, two people more-or-less independently had the idea
that quantum computers could provide a computational speed-up over classical computers. One of them
was David Deutsch, and his example was Deutsch’s algorithm, which was improved by Jozsa to make the
Deutsch-Jozsa algorithm we saw before. The other was Richard Feynman, who observed that in physics,
it was very difficult for classical computers to simulate the behavior of quantum systems because of the
exponentially large Hilbert space. He then pointed out that a quantum computer ought to be able to
simulate other quantum systems well, which implied a computational speedup.

Most of the systems studied today by physicists have some level of quantumness in them, and quantum
mechanics is also highly relevant in chemistry and other areas. In some cases, classical simulation is really
sufficient, either because the system is not very quantum or because there are clever classical algorithms that
work using specific properties of the system. Still, there are plenty of other cases where classical computers
are insufficient and quantum computers would be needed. This would be relevant, for instance, in quantum
chemistry calculations, in materials science and theoretical condensed matter, in nanoscience, and in high
energy physics.

So, what is the task? The behavior of a closed quantum system (one without contact with the outside
world) is described by the Schrödinger equation. The system has a linear operator called the Hamiltonian
H, and Schrödinger’s equation is

i~
d|ψ〉
dt

= H|ψ〉. (8)

Here, |ψ〉 changes continuously as a function of time t. (This is known as the “Schrödinger picture.” There
is an alternative approach where the time evolution is absorbed into the operators, which is called the
“Heisenberg picture.”) H is an operator that represents the energy of the system. H must be Hermitian so
that the energies are real numbers. The eigenstates of H are states with a definite value of the energy, and

3



the eigenvalue of H for a specific eigenstate is the energy of that state. The ground state is the eigenstatestate
with the lowest energy, which is important at low temperatures.

Open systems are ones that interact with the environment. They still have a Hamiltonian, but have
additional terms describing how they interact with the environment. A full description of the behavior
of the system would require understanding the behavior of the environment as well, but in some cases,
you can approximate the behavior of the environment and get sensible equations to describe the evolution
of the system by itself. Quantum algorithms to simulate the behavior of open quantum systems are not
well-developed, so we will focus on the case of closed systems.

4


