
CMSC 657: Introduction to Quantum Information Processing

Lecture 11

Instructor: Daniel Gottesman

Fall 2024

1 Shor’s Algorithm

1.1 Shor’s Algorithm overview

Shor’s algorithm solves the period finding problem. I will describe it for the function f(a) = xa mod N , but
it works in the same way for any periodic function with period r that does not otherwise repeat values.

|0〉

|0〉

|0〉

|0〉

|0〉

“|xa〉”

“|a〉”

H

H

H

xa mod N

�H

�H

F
�
H

�H

�H
classical

post-processing

1 2 3 4 5 6

There are two registers, each with multiple qubits. The first register has n qubits and the second register
has dlogNe qubits. Note that the labels on the left are simply to remind you what the registers represent. The
qubits don’t start in that state (although they do get there later in the circuit). The modular exponentiation
calculates xa, where |a〉 is the value of the first register at this point and x is a fixed value hardcoded into
the circuit, and adds it to the second register. That is, this section does |a〉|c〉 7→ |a〉|c⊕ xa〉. The F is the
Fourier transform, specifically the discrete Fourier transform over Z2n :

F|a〉 =
∑
b

ωab|b〉. (1)

Here ω = exp(2πi/2n), a 2n-th root of unity.
To understand this algorithm, let us first imagine an idealized case when r|2n (recall r is the period of

xa mod N), and track the state through the algorithm:

1. |0〉|0〉

2.
∑
a |a〉|0〉

3.
∑
a |a〉|xa〉

4. Measurement result is z = xa. However, xa+jr = xa, so the state is
∑
j |a0 + jr〉.

1

�-
ra0

5. After the Fourier transform, we have

∑
j

∑
b

ω(a0+jr)b|b〉 =
∑
b

ωa0b

∑
j

e2πijb/(2
n/r)

 |b〉 (2)

=
∑
c

ωa0c2
n/r|c2n/r〉. (3)

To get the last line, note that if b = cα, then
∑
j exp(2πijb/α) = α (the number of values of j),

whereas if b 6= cα for integer c, then
∑
j exp(2πijb/α) = 0 as the phases cancel out around the unit

circle. Letting α = 2n/r, we get the last line above. (The factor α gets absorbed into the normalization.)

6. The measurement output will be c(2n/r) for random c

Post-processing: Repeat the procedure a few times. We get c1α, c2α, c3α, Find the gcd of these
results to get α = 2n/r, which then gives us r.

In the realistic case, it will not generally be true that r|2n. We also need to make sure there are efficient
quantum circuits for the big unitaries calculating xa mod N (the modular exponentiation) and doing the
Fourier transform.

Shor’s algorithm is useful for breaking other crypto systems and finding periods of other kinds of functions
as well.

One other thing to note: We don’t actually need to measure the second register, as we don’t ever use
the outcome of that measurement. It is merely helpful when thinking about the algorithm to put the
measurement in, but the algorithm works exactly the same with or without the measurement.

1.2 Fourier transform

How can we implement the Fourier transform efficiently? Recall we are trying to perform the unitary
F|a〉 =

∑
b ω

ab|b〉

• Input a = a02n−1 + a12n−2 + a22n−3 + . . .+ an−1

• Output b = b02n−1 + b12n−2 + b22n−3 + . . .+ bn−1

We then calculate

ab = 2n(. . .)+2n−1(a0bn−1 +a1bn−2 + . . .+an−1b0)+2n−2(a1bn−1 + . . .+an−1b1)+ . . .+20(an−1bn−1). (4)

The coefficient of 2n does not matter since ab only appears in ωab and ω2n = 1.
It is convenient to write b in reverse order and then separate out the powers of each bit of b in the

expression, so that the output of the unitary on basis state input |a〉 is∑
b

ωab|b〉 =
∑
b

ωab|bn−1〉|bn−2〉 · · · |b0〉 (5)

=

∑
bn−1

ω(a02
n−1+a12

n−2+...+an−12
0)bn−1 |bn−1〉

∑
bn−2

ω(a12
n−1+a22

n−2+...+an−12
1)bn−2 |bn−2〉

 · · ·
·

[∑
b0

ω(an−12
n−1)b0 |b0〉

]
. (6)

2

Let us focus on one of these factors, the bn−1−k term. The sum goes over two values bn−1−k = 0 and
bn−1−k = 1, i.e.

|0〉+ ωpk |1〉. (7)

The power of ω that appears is

pk =

ak2n−1 +
∑
j>k

aj2
n−1−(j−k)

 , (8)

so the phase for |1〉 is

ωak2
n−1 ∏

j

ωaj2
n−1−(j−k)

= (−1)ak
∏
j

eajπi/2
j−k

. (9)

(And |0〉 has phase +1.)
Recall that we are writing the output in reverse order, so the output bit bn−1−k is the same physical

qubit as input qubit ak. The first phase term (−1)aibn−1−k is thus what would be achieved via a Hadamard
on the qubit that began as ak (the kth qubit in the a register before the Fourier transform).

The other phase terms can be achieved via a controlled-Rπ/2j−k+1 between the bn−1−k qubit and the aj
qubit. If we first do the Hadamard for qubit k (so it now holds bn−1−k) and then do the phase shifts between
the kth qubit and the (j + 1)th qubit (which still holds aj since j ≥ k), we get the desired phase. We do
this whole procedure sequentially for each k.

a0

a1

a2

...

an−1

H s
Rπ/4

s
Rπ/8

. . .

s

Rπ/2n

H s
Rπ/4

. . .

s

Rπ/2n−1

H

. . .

s
Rπ/2n−2

· · ·

H b0

...

bn−3

bn−2

bn−1

The total complexity of this Fourier transform circuit is n+ (n− 1) + (n− 2) + . . .+ 1 = O(n2)

1.3 Modular exponentiation

This is basically the same as the classical modular exponentiation, but we need to do it in superposition. x
is fixed. We can pre-calculate x2, x4, . . . , x2

n−1

by repeated squaring, as before. This can be done classically
because no superposition is needed.

In the quantum part of the algorithm, we decompose a =
∑
k ak2n−1−k, its binary representation. Using

controlled additions, we map

|a〉|0〉 7→ |a〉|xan−1〉|(x2)an−2〉|(x4)an−3〉 · · · |(x2
n−1

)a0〉. (10)

The control in each case is the ith qubit of the first register. Then we multiply all these powers of x together
using a quantum (i.e. reversible) version of some multiplication circuit and then uncompute the intermediate
powers of x, getting

|a〉|xan−1+2an−2+4an−3+...+2n−1a0〉 = |a〉|xa〉. (11)

Now let us calculate the complexity of this procedure:

• The pre-calculation involves n− 1 multiplications since each power of 2 can be formed by multiplying
the previous power by itself.

3

• There are n controlled-addition steps in the intermediate calculation, and we do it twice (to uncom-
pute), so 2n controlled-additions.

• We multiply together n values, so there are n− 1 multiplications. Many of the values being multiplied
are likely to be 1, but we are working in superposition, so we can’t see how many are actually 1 and
should do all n− 1 multiplications regardless.

• Each multiplication takes time O(log2N) via long multiplication. Additions take less time.

• The total time for this part of the algorithm is thus O(n log2N). If n = O(logN), as we will want it
to be, we have a time O(n3).

• The multiplications are time-consuming, but faster classical algorithms for multiplication are known.
The total time for modular exponentiation using the best fast multiplication algorithms is asymptot-
ically O(n2 log n log log n). However, note that you have to be using really really big numbers before
the fast multiplication algorithms kick in and become better.

Shor’s algorithm as a whole uses O(n + logN) single-qubit operations (state preparations, Hadamards,
and measurements), plus the Fourier transform, which uses O(n2) operations, as discussed, and the modular
exponentiation. The modular exponentiation therefore dominates the complexity of the algorithm.

4

