Set Warnings "-notation-overridden,-parsing". From Coq Require Export String. From LF Require Import Induction. Parameter MISSING: Type. Module Check. Ltac check_type A B := match type of A with | context[MISSING] => idtac "Missing:" A | ?T => first [unify T B; idtac "Type: ok" | idtac "Type: wrong - should be (" B ")"] end. Ltac print_manual_grade A := match eval compute in A with | Some (_ ?S ?C) => idtac "Score:" S; match eval compute in C with | ""%string => idtac "Comment: None" | _ => idtac "Comment:" C end | None => idtac "Score: Ungraded"; idtac "Comment: None" end. End Check. From LF Require Import Induction. Import Check. Goal True. idtac "------------------- double_plus --------------------". idtac " ". idtac "#> double_plus". idtac "Possible points: 2". check_type @double_plus ((forall n : nat, double n = n + n)). idtac "Assumptions:". Abort. Print Assumptions double_plus. Goal True. idtac " ". idtac "------------------- eqb_refl --------------------". idtac " ". idtac "#> eqb_refl". idtac "Possible points: 2". check_type @eqb_refl ((forall n : nat, (n =? n) = true)). idtac "Assumptions:". Abort. Print Assumptions eqb_refl. Goal True. idtac " ". idtac "------------------- binary_commute --------------------". idtac " ". idtac "#> bin_to_nat_pres_incr". idtac "Possible points: 3". check_type @bin_to_nat_pres_incr ( (forall b : bin, bin_to_nat (incr b) = 1 + bin_to_nat b)). idtac "Assumptions:". Abort. Print Assumptions bin_to_nat_pres_incr. Goal True. idtac " ". idtac "------------------- nat_bin_nat --------------------". idtac " ". idtac "#> nat_bin_nat". idtac "Possible points: 3". check_type @nat_bin_nat ((forall n : nat, bin_to_nat (nat_to_bin n) = n)). idtac "Assumptions:". Abort. Print Assumptions nat_bin_nat. Goal True. idtac " ". idtac "------------------- double_bin --------------------". idtac " ". idtac "#> double_incr". idtac "Possible points: 0.5". check_type @double_incr ((forall n : nat, double (S n) = S (S (double n)))). idtac "Assumptions:". Abort. Print Assumptions double_incr. Goal True. idtac " ". idtac "#> double_bin_zero". idtac "Possible points: 0.5". check_type @double_bin_zero ((double_bin Z = Z)). idtac "Assumptions:". Abort. Print Assumptions double_bin_zero. Goal True. idtac " ". idtac "#> double_incr_bin". idtac "Possible points: 1". check_type @double_incr_bin ( (forall b : bin, double_bin (incr b) = incr (incr (double_bin b)))). idtac "Assumptions:". Abort. Print Assumptions double_incr_bin. Goal True. idtac " ". idtac " ". idtac "Max points - standard: 12". idtac "Max points - advanced: 12". idtac "". idtac "Allowed Axioms:". idtac "functional_extensionality". idtac "FunctionalExtensionality.functional_extensionality_dep". idtac "plus_le". idtac "le_trans". idtac "le_plus_l". idtac "add_le_cases". idtac "Sn_le_Sm__n_le_m". idtac "O_le_n". idtac "". idtac "". idtac "********** Summary **********". idtac "". idtac "Below is a summary of the automatically graded exercises that are incomplete.". idtac "". idtac "The output for each exercise can be any of the following:". idtac " - 'Closed under the global context', if it is complete". idtac " - 'MANUAL', if it is manually graded". idtac " - A list of pending axioms, containing unproven assumptions. In this case". idtac " the exercise is considered complete, if the axioms are all allowed.". idtac "". idtac "********** Standard **********". idtac "---------- double_plus ---------". Print Assumptions double_plus. idtac "---------- eqb_refl ---------". Print Assumptions eqb_refl. idtac "---------- bin_to_nat_pres_incr ---------". Print Assumptions bin_to_nat_pres_incr. idtac "---------- nat_bin_nat ---------". Print Assumptions nat_bin_nat. idtac "---------- double_incr ---------". Print Assumptions double_incr. idtac "---------- double_bin_zero ---------". Print Assumptions double_bin_zero. idtac "---------- double_incr_bin ---------". Print Assumptions double_incr_bin. idtac "". idtac "********** Advanced **********". Abort. (* 2024-08-28 21:31 *)