
Java Streams

1

Streams

A stream represents a sequence of elements and
supports different kind of operations to perform
computations upon those elements.
Streams let you group and process data.

2

Streams

For example:
• You might want to create a collection of banking transactions to

represent a customer’s statement. Then, you might want to
process the whole collection to find out how much money the
customer spent.

public class Transaction {
 private double value = 0;
 private int type;
 private int id;
 public Transaction(int id,int type, double v) {
 this.type = type;
 value = v;
 this.id = id;
} 3

Java 8 Stream

Java 8 added Stream that lets you process data in a
declarative way.

Furthermore, streams can leverage multi-core
architectures without you having to write a single line of
multithread code.
• parallel streams

4

Stream
Sequence of elements
• A stream provides an interface to a sequenced set of values of a specific

element type.
• Streams don’t actually store elements; they are computed on demand.

Source
• Streams consume from a data-providing source such as collections, arrays, or

I/O resources.

Aggregate operations
• Streams support SQL-like operations and common operations from functional

programing languages, such as filter, map, reduce, find, match, sorted, and so
on.

5

Stream
Two fundamental characteristics that make them very different from
collection operations:

Pipelining: Many stream operations return a stream themselves.
Operations to be chained to form a larger pipeline. This enables
certain optimizations, such as laziness and short-circuiting.

Internal iteration: In contrast to collections, which are iterated
explicitly (external iteration), stream operations do the iteration
behind the scenes for you.

6

Stream Pipeline

7

Streams vs Collections
The difference between collections and streams has to do with
when things are computed.

A collection is an in-memory data structure, which holds all the
values that the data structure currently had.

Every element in the collection has to be computed before it can be
added to the collection.

In contrast, a stream is a conceptually fixed data structure in which
elements are computed on demand.

8

Streams vs Collections

Using the Collection interface requires iteration to be done by the
user
• Foreach loop: external iteration.

The Streams library uses internal iteration— it does the iteration for
you and takes care of storing the resulting stream value somewhere;
you merely provide a function saying what’s to be done.

9

Streams vs Collections

List<String> transactionIds = new ArrayList<>();
for(Transaction t: transactions){
 transactionIds.add(t.getId());
}

List<Integer> transactionIds =
 transactions.stream()
 .map(Transaction::getId)
 .collect(toList());

Collections:

Streams:

• Collections explicitly iterates the list of transactions sequentially to extract each
transaction ID and add it to an accumulator.

• Streams builds a query, map extracts the transaction IDs and the collect
converts the resulting Stream into a List. 10

Stream Operations

intermediate operations
• filter, sorted, and map
• Can be connected together to form a pipeline
• Intermediate operations do not perform any processing until a

terminal operation is invoked on the stream pipeline. They are
“lazy”.

terminal operations
• Collect
• Closes a pipeline

11

Lazy Evaluation
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8);
List<Integer> t = numbers.stream()
 .filter(n -> {print("filtering " + n);
 return n % 2 == 0; })
 .map(n -> { print("mapping " + n);
 return n * n; })
 .limit(2)
 .collect(toList());

Computes two even square
numbers from a given list of
numbers.

output: filtering 1
 filtering 2
 mapping 2
 filtering 3
 filtering 4
 mapping 4

12

Quiz
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8);
List<Integer> mystery =
 numbers.stream()
 .filter(n -> n % 2 == 0)
 .map(n -> n * 2)

 .collect(Collectors.toList());

The value of List mystery:

A. [1, 2, 3, 4]
B. [4, 8, 12, 16]
C. [2, 4, 6, 8]
D. 40

13

Quiz
List<Integer> numbers = Arrays.asList(1,2,3,4,5,6,7,8);
List<Integer> mystery =
 numbers.stream()
 .filter(n -> n % 2 == 0)
 .map(n -> n * 2)

 .collect(Collectors.toList());

The value of List mystery:

A. [1, 2, 3, 4]
B. [4, 8, 12, 16]
C. [2, 4, 6, 8]
D. 40

14

Stream Operations: Filtering
Filter elements from a stream:
filter(Predicate)
• Takes a predicate (java.util.function.Predicate) as an argument and returns a

stream including all elements that match the given predicate

Distinct
• Returns a stream with unique elements (according to the implementation of

equals for a stream element)

limit(n)
• Returns a stream that is no longer than the given size n

skip(n)
• Returns a stream with the first n number of elements discarded

15

Stream Operations: Filtering
Distinct
• Returns a stream with unique elements (according to the

implementation of equals for a stream element)

List<String> list = Arrays.asList(
 "A", "B", "C", "D", "A", "B", "C");

// Get collection without duplicate i.e. distinct only
List<String> distinctElements =
 list.stream().distinct()
 .collect(Collectors.toList());

//Let's verify distinct elements
System.out.println(distinctElements);

Output is:[A, B, C, D]
16

Stream Operations: Filtering
limit(n)
• Returns a stream that is no longer than the given size n

Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("\nA"+x))
 .limit(3)
 .peek(x->System.out.print("B"+x))
 .forEach(x->System.out.print("C"+x));

17

Stream Operations: Filtering
limit(n)
• Returns a stream that is no longer than the given size n

Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("\nA"+x))
 .limit(3)
 .peek(x->System.out.print("B"+x))
 .forEach(x->System.out.print("C"+x));

A1B1C1
A2B2C2
A3B3C3

18

Stream Operations: Filtering
skip(n)
• Returns a stream with the first n number of elements discarded

Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .skip(6)
 .peek(x->System.out.print("B"+x))
 .forEach(x->System.out.println("C"+x));

19

Stream Operations: Filtering
skip(n)
• Returns a stream with the first n number of elements discarded

Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .skip(6)
 .peek(x->System.out.print("B"+x))
 .forEach(x->System.out.println("C"+x));

A1A2A3A4A5A6A7B7C7
A8B8C8
A9B9C9

20

Quiz: What is the output?
Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .limit(4)
 .skip(2)
 .forEach(x->System.out.print("B"+x));

A. A1B1A2B2A3B3A4B4
B. A1A2A3B3A4B4
C. A3B3A4B4
D. A1A2A3A4B3B4

21

Quiz: What is the output?
Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .limit(4)
 .skip(2)
 .forEach(x->System.out.print("B"+x));

A. A1B1A2B2A3B3A4B4
B. A1A2A3B3A4B4
C. A3B3A4B4
D. A1A2A3A4B3B4

22

Quiz: What is the output?
Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .limit(2)
 .skip(4)
 .forEach(x->System.out.print("B"+x));

A. A1A2A3B3A4B4
B. A1A2
C. A1B1A2B2
D. A1A2B1B2

23

Quiz: What is the output?
Stream.of(1,2,3,4,5,6,7,8,9)
 .peek(x->System.out.print("A"+x))
 .limit(2)
 .skip(4)
 .forEach(x->System.out.print("B"+x));

A. A1A2A3B3A4B4
B. A1A2
C. A1B1A2B2
D. A1A2B1B2

24

Stream Operations: Finding and matching

Determining whether some elements match a given property.
• anyMatch
• allMatch
• noneMatch

They all take a predicate as an argument and return a boolean as
the result

• For example, check if all elements in a stream of transactions have a value
higher than 100.

boolean expensive = transactions.stream()
 .allMatch(t-> t.getValue() > 100);

25

Stream Operations: findFirst, findAny

Retrieves arbitrary elements from a stream.

They can be used in conjunction with other stream operations such
as filter.

Both findFirst and findAny return an Optional object

Optional<Transaction> = transactions.stream()
 .filter(t-> t.getType() == Transaction.GROCERY)
 .findAny();

26

Optional<T> Class

The Optional<T> class (java.util .Optional) is a container
class to represent the existence or absence of a value.
It is possible that findAny doesn’t find any transaction of
type grocery.
The Optional class contains several methods to test the
existence of an element.

transactions.stream()
 .filter(t-> t.getType()== Transaction.GROCERY)
 .findAny()
 .ifPresent(System.out::println);

27

Stream Operations: Mapping

takes a function (java.util.function.Function) as an
argument to project the elements of a stream into another
form.
The function is applied to each element, “mapping” it into
a new element.

List<String> words = Arrays.asList(
 "Oracle", "Java", "Magazine");
List<Integer> wordLengths = words.stream()
 .map(String::length)
 .collect(toList());

28

Stream Operations: Reducing

Repeatedly applies an operation (for example, adding two
numbers) on each element until a result is produced.
It’s often called a fold operation in functional programming.

int sum = 0;
for(int x : numbers) { sum += x; }

int sum = numbers.stream().reduce(0, (a,b) -> a + b);

vs

• A BinaryOperator<T> to combine two elements and produce a new value
29

Stream Operations: Reducing
The reduce method essentially abstracts the pattern of repeated
application.
Other queries such as “calculate the product” or “calculate the
maximum” become special use cases of the reduce method.

Product:
int product = numbers.stream()
 .reduce(1, (a, b) -> a * b);
Max:
int product = numbers.stream()
 .reduce(1, Integer::max);

30

IntStream, DoubleStream, LongStream
Specialize the elements of a stream to be int, double, and long.

to convert a stream to a specialized version are mapToInt,
mapToDouble, and mapToLong.

return a specialized stream instead of a Stream<T>.

int statementSum = transactions.stream()
 .mapToInt(Transaction::getValue)
 .sum();

31

Range

range and rangeClosed
• Static methods of IntStream, DoubleStream, and LongStream

For examples: use rangeClosed to return a stream of all
odd numbers between 10 and 30.

IntStream oddNumbers = IntStream
 .rangeClosed(10,30)
 .filter(n -> n % 2 == 1);

32

Building Streams

From arrays
• Stream.of //factory method
• Arrays.stream

Stream<Integer> numbersFromValues = Stream.of(1,2,3,4);
int[] numbers = {1,2,3,4};
IntStream numbersFromArray = Arrays.stream(numbers);

33

Building Streams

Convert a file into a stream of lines
• Files.lines

long numberOfLines =
Files.lines(Paths.get(“file.txt”),Charset.defaultCharset())
.count();

34

Infinite streams
Because of lazy evaluation, infinite stream is possible
Stream.iterate and Stream.generate

Stream<Integer> nums = Stream.iterate(0,n->n+10);

nums.limit(5).forEach(System.out::println);
// 0, 10, 20, 30, 40

Process infinite stream:

35

Stream Example

List<Integer> transactionsIds = transactions.parallelStream()
 .filter(t -> t.getType() == Transaction.GROCERY)

 .sorted(comparing(Transaction::getValue).reversed())

 .map(Transaction::getId)

 .collect(toList());

36

Parallel Streams
You can execute streams in serial or in parallel.

 When a stream executes in parallel, the Java runtime partitions the
stream into multiple substreams.

 Aggregate operations iterate over and process these substreams in
parallel and then combine the results.

37

Parallel Streams

double average =
 roster.parallelStream()
 .filter(p -> p.getGender() == Person.Sex.MALE)
 .mapToInt(Person::getAge)
 .average()
 .getAsDouble();

38

Quiz 3: What is the output?

39

public class GFG {
public static void main(String[] args){

 List<Integer> list = Arrays.asList(0,2,4,6);
 list.stream().peek(System.out::print}

}

A.0246
B.0
C.No output. Peek is an intermediate operator
D.0,2,4,6

Quiz 4: What is the output?

40

public class GFG {
public static void main(String[] args){

 List<Integer> list = Arrays.asList(0,2,4,6);
 list.stream().peek(System.out::print}//does not print

 long c =list.stream().peek(System.out::print).count();
 System.out.println(c);
}

A.02464
B.4
C.No output
D.0,2,4,6,4

Quiz 5: What is the output

41

IntStream stream = IntStream.of(1, 2, 3,4,5,6,7,8);
List<Integer> test = stream.skip(2)
 .skip(3).boxed()
 .collect(Collectors.toList());

System.out.println(test);

A.[4,5,6,7,8]
B. [6, 7, 8]
C.[3,4,5,6,7,8]
D.[]

Quiz 6: What is the output?

42

IntStream stream = IntStream.of(1,2,3,4,5);
long a = stream.skip(2).count();
long b = stream.skip(3).sum();
System.out.println(a +"," + b);

A.3,9
B.12
C.Error. count closes the stream
D.0

This Class So Far

Concurrent programming in Java
Exploiting parallelism to improve performance
Multi-process programming in Java using actors (akka)
Next topic: MapReduce
• A “programming model” for processing large data sets in parallel

on a cluster
• Developed by Google researchers in early 2000s
• Key features

➢ Conceptual simplicity
➢ Scalability and fault-tolerance of operations

43

MapReduce, Conceptually

Input data consists of key/value pairs
• E.g. key could be a URL: “www.cs.umd.edu”
• Value could be the .html code in the file associated with the

URL
MapReduce developer specifies
• “map” function to produce intermediate set of (possibly) new-

key, new-value pairs
• “reduce” function to convert intermediate data into final result

Key /
value
pairs

map
Key2 /
value2
pairs

reduce Result
list

44

What?
Think of data processed by
MapReduce as “tables”
• The table has two columns:

one for keys, the other for
values

• Each key/value pair in the
data set corresponds to a row
in the table

So:
• “map” converts input table

into a new, intermediate table
• “reduce” constructs a new

table that aggregates data in
the intermediate table

Key Value

key1 value1

key2 value2

…

keyn valuen

45

Example: Word Counting

Suppose we want to give a MapReduce application giving
an occurrence count for each word in a list of files
• Input table: file name / file contents pairs (both strings, the

second being much longer!)
• Final table produced by reduce: word / int pairs, where each int

is the # of occurrences of the word in the documents
How do we do this using MapReduce?

46

Word Counting: map

map converts individual row (file name, file contents)
into collection of (word, “1”) rows

File name (key) Contents (value)

constitution.txt “We the people
…”

decl_ind.txt “When, in the
course…”

…

Word (key2) Count (value2)

“When” 1

“in” 1

“the” 1

“course” 1

…

map

47

Word Counting: reduce

reduce takes all rows with a given word (key2) and
sums the counts (value2), yielding (at most!) one
row in output table

Word (key2) Count (value2)

…

“the” 1

“the” 1

…

“the” 1

…

Word (key2) Count (value2)

…

“the” 15

…

reduce

48

Other Applications of MapReduce

Distributed grep
Count of URL access frequency
“Web-link graph reversal”: compute all URLs with a link to
each of a given list of URLs
Distributed sort
“Inverted index”: given list of documents, produce output
giving, for each word, the documents it appears in
Used by 1000s of organizations around the world,
including Amazon, Google, Yahoo, …

49

Foundations of MapReduce
MapReduce is based on concepts from functional
programming
• “map” in functional languages (e.g. OCaml!) converts a function over

values to a function mapping lists to lists
➢ Given list, (map f) applies f to each element in the list
➢ The list of results is then returned

• “fold” takes a seed / function value as input, returns a function
mapping lists to single values as output
➢ Actually, two versions: “left” and “right”
➢ Point of both is to convert list to single value

So?
• Functional languages do not modify variables
• Mapping can be computed in parallel!
• MapReduce uses a variant of “fold”; details later

50

Functional Map

Suppose f is a function
Then (map f) is a new function on lists:
[x1; x2; … ; xn]

[f(x1); f(x2); … ; f(xn)]
The f(xi) can be computed in parallel!
• The xi do not share state
• f cannot modify its arguments

f f f (map f)

51

Map Examples in OCaml
let add1 x = x+1;;
val add1 : int -> int = <fun>
let g = List.map add1;;
val g : int list -> int list = <fun>
g [1;2;3];;
- : int list = [2; 3; 4]
let double x = [x;x];;
val double : 'a -> 'a list = <fun>
let h = List.map double;;
val h : '_a list -> '_a list list = <fun>
h [1;2;3];;
- : int list list = [[1; 1]; [2; 2]; [3; 3]]

52

Functional Fold (Left)

Suppose f is a binary function, s is a value
Then (fold_left f s) is a function that “iteratively applies” f
over lists to produce a single value
(fold_left f s) [x1; x2; … xn] =
f (… f (f(s, x1), x2) …, xn)
E.g. if f x y = x+y, s = 0, then
(fold_left f 0) [1;2;3] = ((0+1) + 2) + 3 = 6

53

Fold (left) Examples in OCaml
let sum x y = x+y;;
val sum : int -> int -> int = <fun>
let h = List.fold_left sum 0;;
val h : int list -> int = <fun>
h [1;2;3];;
- : int = 6
let prefix tl hd = hd::tl;;
val prefix : 'a list -> 'a -> 'a list = <fun>
let k = List.fold_left prefix [];;
val k : '_a list -> '_a list = <fun>
k [1;2;3];;
- : int list = [3; 2; 1]

54

MapReduce, Logically
Assumption: input data for MapReduce applications consists of lists
of (key, value) pairs (i.e. tables)
A MapReduce application contains:
• A “mapper function” converting single (key, value) pairs (i.e. single rows in

the old table) to lists of (key2, value2) pairs (i.e. multiple rows in the new
table)

• A “reducer function” converting pairs of form (key2, value2 list) to a list of
values (i.e. reducer aggregates data associated to key2 in the intermediate
table)

The MapReduce framework does the following
• Apply “mapper” to the input data
• Glue together the resulting lists into a single list of (key2, value2) pairs
• Rearrange this list into a list (key2, value2 list) pairs, where each distinct

key2 appears once
• Applying “reducer” to each element in the new list
• Return the aggregate results

55

Hadoop

An open-source implementation of MapReduce
Design desiderata
• Performance: support processing of huge data sets (millions of

files, GB to TB of total data) by exploiting parallelism, memory
within computing clusters

• Economics: control costs by using commodity computing
hardware

• Scalability: a larger the cluster should yield better performance
• Fault-tolerance: node failure does not cause computation failure
• Data parallelism: same computation performed on all data

56

Cluster?

Hadoop is designed to run on a cluster
• Multiple machines, typically running Linux
• Machines connected by high-speed local-area network (e.g. 10-

gigabit Ethernet)
Hardware is:
• High-end (fast, lots of memory)
• Commodity (cheaper than specialized equipment)

57

Hadoop Architecture
Hadoop Architecture comprises three major layers.
• HDFS (Hadoop Distributed File System)
• Yarn
• MapReduce

58

Hadoop Architecture

Hadoop has a master-slave topology
• One master node and multiple slave nodes.

• Master node’s function is to assign a task to various slave
nodes and manage resources.

• The slave nodes do the actual computing.

• Slave nodes store the real data whereas on master we have
metadata.

59

Hadoop Architecture

60

Principles of Hadoop Design

Data is distributed around network
• No centralized data server
• Every node in cluster can host data
• Data is replicated to support fault tolerance

Computation is sent to data, rather than vice versa
• Code to be run is sent to nodes
• Results of computations are aggregated at end

Basic architecture is master/worker
• Master, aka JobNode, launches application
• Workers, aka WorkerNodes, perform bulk of computation

61

Components of Hadoop

MapReduce
• Basic APIs in Java supporting MapReduce programming model

Hadoop Distributed File System (HDFS)
• Applications see files
• Behind the scenes: HDFS handles distribution, replication of

data on cluster, reading, writing, etc.

62

Block Replication

63

Hadoop Execution: Startup

1. MapReduce library in user program splits input files into
pieces (typically 16-64 MB), starts multiple copies of
program on cluster

2. One copy is master; rest are workers. Work consists of
map, reduce tasks

3. Master keeps track of idle workers, assigns them map /
reduce tasks

[Discussion adapted from Ravi Mukkamala, “Hadoop: A Software Framework for
Data Intensive Computing Applications”; Hadoop 1.2.1 “MapReduce Tutorial”]

64

Hadoop Execution: Map Task
1. Read contents of assigned input split

Master will try to ensure that input split is “close by”
2. Parse input into key/value pairs
3. Apply map operation to each key/value pair; store

resulting intermediate key/value pairs on local disk
4. File is sorted on output key, then partitioned based on key

values
5. Locations of these files forwarded back to Master
6. Master forwards locations of files to relevant reduce

workers
• Which reduce workers get which files depends on partition
• Partition assigns different key values to different reduce tasks

65

Hadoop Execution: Reduce Task

1. Fetch input (files produced by map tasks and sent by
master)

2. Sort input data by key
3. For each key, apply reduce operation to key / list of

values associated with key
4. Write result in file (one output file / key, often, but

configurable)
5. Return location of result files to Master

66

Configuring MapReduce Execution

Many configuration parameters to tune performance!
• Number of maps
• Number of reduces
• Splitting of input
• Sorting, partitioning
• Etc.

Hadoop MapReduce tutorial gives a starting point
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

67

Fault-Tolerance
Big clusters = increased possibility of hardware failure
• Disk crashes
• Overheating

Worker failure
• Master pings worker periodically: no response = worker marked as failed
• Tasks assigned to failed worker added back into task pool for re-assignment
• This works because functional nature of MapReduce ensures no shared

state, while HDFS ensures data is replicated (so data hosted by failed node
is still available)

Master failure
• Masters write checkpoint files showing intermediate progress
• If master fails, a new master can be started from the last checkpoint
• In practice: job generally restarted

68

Setting Up Hadoop

Three possibilities
• Local standalone (everything run in one process)
• Pseudo-distributed (tasks run as separate processes on same

machine)
• Fully distributed (cluster computing)

• Standalone usually used for development, debugging
• Pseudo-distributed to ensure no shared memory, analyze

performance bottlenecks
• Fully-distributed used for final job runs

69

Quiz

Which one of the following is true about Hadoop?

A. It is a distributed framework
B. The main algorithm used in it is Map Reduce
C. It runs with commodity hardware
D. All are true

70

Quiz

Which type of data Hadoop can deal with is

A. Structured
B. Semi - structured
C. Unstructured
D. All of the above

71

Quiz

Which among the following are the features of
Hadoop

A. Open source
B. Fault-tolerant
C. High Availability
D. All of the above

74

Quiz

What are the advantages of 3x replication schema
in Hadoop

A. Fault tolerance
B. High availability
C. Reliability
D. All of the above

75

Writing a Hadoop Application
MapReduce
• One class should extend Mapper<K1,V1,K2,V2>

➢ K1, V1 are key/value classes for input
➢ K2, V2 are key/value classes for output

• Another should extend Reducer<K2,V2,K3,V3>
➢ K2, V2 are key/value classes for inputs to reduce operation
➢ K3, V3 are output key/value classes

Main driver
• Need to create an object in Job (Hadoop class) containing

configuration settings for Hadoop application
• Settings include input / output file formats for job, input file-slice size,

key/value types, etc.
• To run the job: invoke job.waitForCompletion(true)

76

Implementing Mapper<K1,V1,K2,V2>

Key function to implement:
 public void map(K1 key, V1 value, Context c)
• First two inputs are key / value pair, which map should convert

into key2 / value2 pairs
• “Context”?

➢ Used to store key2 / value2 pairs produced by map
➢ Context is a Hadoop class
➢ To store a newly created key2 / value2 pair, invoke:
c.write (key2, value2);

Hadoop takes care of ensuring that pairs written into
context are provided to Reducer!

77

Implementing Reducer<K2,V2,K3,V3>

Key function to implement:
 public void reduce(K2 key, Iterable<V2> values, Context c)
• First args are key / list-of-values pair, which map should convert

into (usually at most one) key3 / value3 pairs
• Context argument used to store these key3 / value3 pairs!

➢ Idea is same as for Mapper implementation!
➢ To store a newly created key3 / value3 pair, invoke:
c.write (key3, value3);

Hadoop takes care of ensuring that pairs written into
context are made available for post-processing (i.e.
sorting, writing into a file)

78

Implementing main()

Must create a Job object (Hadoop class)
• Job constructor typically requires a Configuration argument
• E.g.:
Configuration conf = new Configuration ();
Job job = new Job(conf);

Job object must be configured!
• Key, Value classes must be set
• Mapper, Reducer classes (your implementation!) must be

specified
• Input / output formatting must be given
• Paths to input files, output files must be given

79

Sample main() (from WordCount.java)
public static void main(String[] args) throws Exception {
 // Set up and configure MapReduce job.
 Configuration conf = new Configuration ();
 Job job = new Job(conf);
 job.setJobName("WordCount");
 job.setJarByClass(WordCount.class); // In Eclipse this will not create JAR file

 // Set key, output classes for the job (same as output classes for Reducer)
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // Set Mapper and Reducer classes for the job. (Combiner often not needed.)
 job.setMapperClass(MapClass.class);
 job.setReducerClass(ReduceClass.class);

80

Sample main() (cont.)
// Sets format of input files. "TextInputFormat" views files as a sequence of lines.

 job.setInputFormatClass(TextInputFormat.class);
 // Sets format of output files: here, lines of text.
 job.setOutputFormatClass(TextOutputFormat.class);

 // Set paths for location of input, output. Note former is assumed to be
 // initial command-line argument, while latter is second. No error-checking
 // is performed on this, so there is a GenericOptionsParser warning when run.

 TextInputFormat.setInputPaths(job, new Path(args[0]));
 TextOutputFormat.setOutputPath(job, new Path(args[1]));
 // Run job
 Date startTime = new Date();
 System.out.println("Job started: " + startTime);
 boolean success = job.waitForCompletion(true);
 if (success) {
 Date end_time = new Date();
 System.out.println("Job ended: " + end_time);
 System.out.println("The job took " + (end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
 }
 else { System.out.println ("Job failed."); }
}

81

Other Tools
Apache Hive:
• SQL-like interface to query data stored in various databases and file systems

that integrate with Hadoop
Apache Pig:
• script.abstracts the programming from the Java MapReduce idiom into a

notation which makes MapReduce programming high level,
Hbase: wide-column database
• modeled after Google's Bigtable and written in Java
• Bigtable is a compressed, high performance, and proprietary data storage

system built on Google File System
• Id, {name, address,…}
• Id,{location, services}

82

https://en.wikipedia.org/wiki/Java_(programming_language)

Other Tools

Zookeeper:
• provides a distributed configuration service, synchronization

service, and naming registry for large distributed systems.
Spark
• an open-source distributed general-purpose cluster-computing

framework.
• provides an interface for programming entire clusters with implicit

data parallelism and fault tolerance.

83

	Slide 1: Java Streams
	Slide 2: Streams
	Slide 3: Streams
	Slide 4: Java 8 Stream
	Slide 5: Stream
	Slide 6: Stream
	Slide 7: Stream Pipeline
	Slide 8: Streams vs Collections
	Slide 9: Streams vs Collections
	Slide 10: Streams vs Collections
	Slide 11: Stream Operations
	Slide 12: Lazy Evaluation
	Slide 13: Quiz
	Slide 14: Quiz
	Slide 15: Stream Operations: Filtering
	Slide 16: Stream Operations: Filtering
	Slide 17: Stream Operations: Filtering
	Slide 18: Stream Operations: Filtering
	Slide 19: Stream Operations: Filtering
	Slide 20: Stream Operations: Filtering
	Slide 21: Quiz: What is the output?
	Slide 22: Quiz: What is the output?
	Slide 23: Quiz: What is the output?
	Slide 24: Quiz: What is the output?
	Slide 25: Stream Operations: Finding and matching
	Slide 26: Stream Operations: findFirst, findAny
	Slide 27: Optional<T> Class
	Slide 28: Stream Operations: Mapping
	Slide 29: Stream Operations: Reducing
	Slide 30: Stream Operations: Reducing
	Slide 31: IntStream, DoubleStream, LongStream
	Slide 32: Range
	Slide 33: Building Streams
	Slide 34: Building Streams
	Slide 35: Infinite streams
	Slide 36: Stream Example
	Slide 37: Parallel Streams
	Slide 38: Parallel Streams
	Slide 39: Quiz 3: What is the output?
	Slide 40: Quiz 4: What is the output?
	Slide 41: Quiz 5: What is the output
	Slide 42: Quiz 6: What is the output?
	Slide 43: This Class So Far
	Slide 44: MapReduce, Conceptually
	Slide 45: What?
	Slide 46: Example: Word Counting
	Slide 47: Word Counting: map
	Slide 48: Word Counting: reduce
	Slide 49: Other Applications of MapReduce
	Slide 50: Foundations of MapReduce
	Slide 51: Functional Map
	Slide 52: Map Examples in OCaml
	Slide 53: Functional Fold (Left)
	Slide 54: Fold (left) Examples in OCaml
	Slide 55: MapReduce, Logically
	Slide 56: Hadoop
	Slide 57: Cluster?
	Slide 58: Hadoop Architecture
	Slide 59: Hadoop Architecture
	Slide 60: Hadoop Architecture
	Slide 61: Principles of Hadoop Design
	Slide 62: Components of Hadoop
	Slide 63: Block Replication
	Slide 64: Hadoop Execution: Startup
	Slide 65: Hadoop Execution: Map Task
	Slide 66: Hadoop Execution: Reduce Task
	Slide 67: Configuring MapReduce Execution
	Slide 68: Fault-Tolerance
	Slide 69: Setting Up Hadoop
	Slide 70: Quiz
	Slide 71: Quiz
	Slide 72: Quiz
	Slide 73: Quiz
	Slide 74: Quiz
	Slide 75: Quiz
	Slide 76: Writing a Hadoop Application
	Slide 77: Implementing Mapper<K1,V1,K2,V2>
	Slide 78: Implementing Reducer<K2,V2,K3,V3>
	Slide 79: Implementing main()
	Slide 80: Sample main() (from WordCount.java)
	Slide 81: Sample main() (cont.)
	Slide 82: Other Tools
	Slide 83: Other Tools
	Slide 84: Quiz
	Slide 85: Quiz

