
Concurrent Programming

1CMSC433 Fall 2024

Recommended Textbook

2

Download and investigate

source code examples

http://jcip.net/

CMSC433 Fall 2024

Concurrency?

= “multi-threading”

• single-threaded: at any point during execution, at most one

instruction can be executed next.

• In multi-threaded applications, several instructions can be

executed “next”!

Programming languages include mechanisms for

concurrency

• Threads

• Locks

• Interrupts

• Etc.

3CMSC433 Fall 2024

Why Concurrency?

Performance

• If they can do operations simultaneously, applications run faster!

Availability

• Compute-intensive parts of application need not slow down other

parts (e.g. user interface)

Application demands

• Many applications feature concurrency as part of system design

(e.g. operating systems, communications protocols, simulations)

4CMSC433 Fall 2024

Why Concurrency? (cont.)

5CMSC433 Fall 2024

Why Concurrency? (cont.)

Exploiting multiple processors

• Processor speeds are not increasing as fast as they used to

Multi-CPU machines becoming standard

Can’t take full advantage of multiple CPUs without concurrent

software

6CMSC433 Fall 2024

Why Concurrency? (cont.)

For some problems, concurrency provides a very natural

programming model

• For example, problems involving many, largely independent

actors or actions, e.g.,

➢ Simulations:

• run multiple simulations with different

parameters

➢ Compute servers:

• web servers, email servers

7CMSC433 Fall 2024

Why Concurrency? (cont.)

Isolates and simplifies tasks

For instance servers typically interact with multiple clients

• High performance, non-concurrent implementations have to

multiplex (switch between) clients

• Concurrent servers can handle each client in a separate thread

of control

8CMSC433 Fall 2024

Threads are everywhere

Even if your program never explicitly creates a thread,

framework may create threads on your behalf, and code

called from these threads must be safe. So thread is NOT

optional.

• Garbage Collector

• Finalizer

• AWT, Swing

➢ Deferred tasks

• Servlet, RMI

➢ Creates pools of threads and invoke them

9CMSC433 Fall 2024

Why Not Teach It Sooner?

We do!

However, concurrency is hard

• Concurrent programs are hard to debug

➢ breakpoint?

• Concurrent programs are hard to optimize

a = 1;

while(true){

if(a < 1) break;

…

}

• Concurrent programs are hard to test

➢ interleave

10

Not infinite loop.

Other threads

may update a

CMSC433 Fall 2024

Why Is Concurrency Hard?

Nondeterminism!

• Executing same program can yield different answers

• Replaying a given execution is very difficult

Concurrency breaks procedural abstraction

• Procedural abstraction: a given sequence of instructions will

always return the same result if started in the same state

• Implication: you can think of a sequence of instructions as a

single “big instruction”

• Basis for: compilation, method definition, etc.

11CMSC433 Fall 2024

Visibility

12CMSC433 Fall 2024

Concurrency is cool

13CMSC433 Fall 2024

Parallel Sum Example

14

Sum elements of a large array

Idea: Have 4 simultaneous tasks each sum 1/4 the

array

 ans0 ans1 ans2 ans3

 +

 ans

• Create 4 threads, assigned a portion of the work

• Wait for each object to finish using join()

• Sum 4 answers for the final result

CMSC433 Fall 2024

Parallel Sum Example

15

class SumThread extends Thread {
 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run(){
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

CMSC433 Fall 2024

Parallel Sum Example

16

int sum(int[] arr){
 SumThread[] ts = new SumThread[4];

 int len = arr.length; // do parallel computations

 for(int i=0; i < 4; i++){
 ts[i] = new SumThread(arr, i*len/4, (i+1)*len/4);
 ts[i].start ();
 }

 int ans = 0; // combine results

 for(int i=0; i < 4; i++)
 ans += ts[i].ans;
 return ans;
}

CMSC433 Fall 2024

ts[i] is still running

Parallel Sum Example

17

int sum(int[] arr){
 SumThread[] ts = new SumThread[4];

 int len = arr.length; // do parallel computations

 for(int i=0; i < 4; i++){
 ts[i] = new SumThread(arr, i*len/4, (i+1)*len/4);
 ts[i].start ();
 }
 int ans = 0; // combine results

 for(int i=0; i < 4; i++){
 ts[i].join(); //wait for threads to finish

 ans += ts[i].ans;
 }
 return ans;
}

CMSC433 Fall 2024

Speed Up

18

Sequentil sum:9.69964730357349E7
parallel sum:9.69964730357352E7

Sequentil sum time:1874

parallel sum time:352

Speed up: 5.32

CMSC433 Fall 2024

Running a Sequential Program

Executable
Machine instructions to be
performed

Program counter
Next instruction to be executed

Stack
Current variable definitions

Heap
Dynamically allocated data
structures

Control flow
Sequence of instructions
performed during an execution

Heap

Main memory

Stack

Control flow

19CMSC433 Fall 2024

Java Memory Model

Stack

• Local variables

• Method parameters

Heap

• Objects!

• Every call to new allocates

space on heap

Class-typed variables

• contain either null or a

reference to heap

Heap

Stack

object

object

Main memory

20CMSC433 Fall 2024

More on Main Memory (MM)

Naively, MM is a table:
• Each address can store a value

• Each address refers to one

memory location (no copies)

In reality, several copies of a given address are possible
• Caches

• Registers

• …

Why? Performance

• Higher-speed memory is more expensive

• Copying frequently used data into high-speed memory (register,
cache) improves performance while containing cost

Address Value

0000 ‘a’

0001 37

0002 NULL

21CMSC433 Fall 2024

Memory Latency

22CMSC433 Fall 2024

Concurrent Programs

Multiple control flows!

Programs with multiple control flows can be

• Concurrent

• Parallel

• Distributed

Control flows are either

• Processes

• Threads

23CMSC433 Fall 2024

Concurrent vs. Parallel vs. Distributed

Concurrent

number of control flows unrelated to number of physical processors

Parallel

number of control flows ≤ number of physical processors; each flow

has its own processor

Distributed

Multiple machines connected via network

24CMSC433 Fall 2024

An analogy

A program is like a recipe for a cook
• One cook who does one thing at a time! (Sequential)

Parallelism:
• Have lots of potatoes to slice?

• Hire helpers, hand out potatoes and knives

• But too many chefs and you spend all your time coordinating

Concurrency:
• Lots of cooks making different things, but only 4 stove burners

• Want to allow access to the burners, but not cause spills or incorrect

burner settings

25CMSC433 Fall 2024

An analogy

26CMSC433 Fall 2024

Parallelism Example

Parallelism: Use extra computational resources to solve a problem faster

27

int sum(int[] arr){
 res = new int[4];
 len = arr.length;
 for(i=0; i < 4; i++) { //parallel iterations
 res[i] = sumRange(arr, i*len/4, (i+1)*len/4);
 }
 return res[0] + res[1] + res[2] + res[3];
}

int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

Pseudocode for array sum

CMSC433 Fall 2024

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared

resources

Pseudocode for a shared chaining hashtable

• Prevent bad interleavings but allow some concurrent access

28

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket];
 do the insertion
 re-enable access to table[bucket];
 }
 V lookup(K key) {
 allow concurrent lookups to same bucket
 }
}

CMSC433 Fall 2024

Process

• A process is a unit of resource

allocation & protection

Thread

• A Java thread is a unit of

computation that runs in the

context of a process

29

Processes vs. Threads

CMSC433 Fall 2024

Processes vs. Threads

Processes
• Possess own heap

• Communicate via IPC (= inter-process communication) mechanisms
➢ Sockets
➢ Message passing
➢ Etc.

Threads
• Contained within processes

• Possess own stack, program counter

• Share heap with other threads in same process

• Communicate via shared memory

Historically
• Process management handled by operating system

• Processes were single-threaded

30CMSC433 Fall 2024

Multi-threaded Process

Heap

Stack

1

Thread 1

Stack

2

Thread 2

31

Java threads running in the same process can communicate with

each other via shared objects or message passing

CMSC433 Fall 2024

Running a Multi-Process/Multi-Threaded Application

Running a thread requires using a processor

What decides which thread gets which processor?

• Scheduler (part of operating system)!

• Scheduling policy decides which threads run when

• Pre-emptive schedulers can interrupt one thread and let another

run on a given processor

➢ Interrupted thread is “suspended”: its stack, program counter are saved so

that thread can be re-activated later

➢ Stack, program of new thread are loaded and new thread activated

➢ This is called a context switch

32CMSC433 Fall 2024

Threads, Processes and Processors

Do processes run on single machine? Yes

Do processes run on a single processor? Not necessarily

• Different threads can run on different processors

• Scheduler makes this decision

Do threads run on a single processor?

• Usually

• Some schedulers support thread migration (why?)

33CMSC433 Fall 2024

A Reference Model for Distributed / Parallel /

Concurrent Programs

Network

CPU

Machine

Process

Threads

CPU

CPU

Machine

34CMSC433 Fall 2024

Language Support for Concurrency

Many languages support concurrency!

C, C++, C#, OCaml, Java, Scala, Erlang, Python, …

Traditionally: process / thread management handled via

system calls to operating system

• Not part of core language (e.g. C)

• Platform-specific, non-portable, since different OS’s have

different mechanisms

Modern languages (e.g. Java, Scala, Erlang) include

mechanisms for thread management directly

35CMSC433 Fall 2024

Java Threads

36

Threads are the most basic way of obtaining concurrency in Java

CMSC433 Fall 2024

Java Threads Are Objects

Object class is Thread, which is part of java.lang package

(automatically imported!)

37CMSC433 Fall 2024

Java Threads

Thread objects include:

• public void run() executed when thread is launched

• public void start() to launch the thread

• Other methods that we will study later

• Constructors, of which more later, but here are two:

➢ Thread() create a thread

➢ Thread(String name) create a thread with the given

name

38CMSC433 Fall 2024

Giving Code to Java Threads

39

public class Worker extends Thread {

 public void run() {

 // code to run goes here

 }

}

Override the run() method in the subclass &

define the thread’s computations

CMSC433 Fall 2024

Giving Code to Java Threads

40

public class Worker extends Thread {

 public void run() {

 // code to run goes here

 }

}

Create & start a thread using a named subclass of Thread

Thread t = new Worker();

t.start();

CMSC433 Fall 2024

Implement the Runnable interface

Another approach:

• Implementing Runnable interface

• override run()

41CMSC433 Fall 2024

“Desired Functionality in run()”?

Define a class implementing the Runnable interface

Implement the run() method of an interface to define the

thread’s computations

• Use relevant constructor in Thread on objects in this class

Thread (Runnable target)

Thread (Runnable target, String name)

42CMSC433 Fall 2024

Implementing Runnable Interface

43

public class Worker implements Runnable{

 public void run () {

 // code to run goes here

 }

}

Create an instance of a named class as the runnable

Runnable r = new Worker();

CMSC433 Fall 2024

Implementing Runnable Interface

44

public class Worker implements Runnable{

 public void run () {

 // code to run goes here

 }

}

Runnable r = new Worker();

new Thread(r).start();

Pass that runnable to a new thread object & start it

CMSC433 Fall 2024

Anonymous Inner Class

45

new Thread(new Runnable() {

 public void run(){

 // code to run goes here

 }

}).start()

Create & start a thread using an anonymous inner class as the

runnable

CMSC433 Fall 2024

Java 8: Lambda Expression

46

new Thread(() -> {

 // code to run goes here

}).start();

CMSC433 Fall 2024

Java 8: Lambda Expression

47

Runnable r = () -> {

 // code to run goes here

};

new Thread(r).start(

You can name the Runnable:

CMSC433 Fall 2024

Thread Implementation via Subclassing (Inheritance)

public class HelloWorldThread extends Thread {

 public void run() {

 System.out.println ("Thread says Hello World!");

 }

}

New class HelloWorldThread is introduced

• Extends Thread class

• Uses overriding to redefine run() method to do what we want

48CMSC433 Fall 2024

Thread Implementation via Runnable

public class HelloWorldRunnable implements Runnable{
 public void run() {
 System.out.println ("Runnable says Hello
 World!");
 }
}

Runnable is an interface in java.lang containing only:
public void run()

This class implements Runnable by providing each object
with a run() method

Constructor for Thread class can now be called with
objects in this class

49CMSC433 Fall 2024

Thread Creation

Thread h1 = new HelloWorldThread ();

Thread h2 = new Thread (new HelloWorldRunnable ());

h1.start();

h2.start();

h1 is thread object created from subclass of Thread

h2 is thread object created from Runnable object

Output is two instances of “Hello World!”

50CMSC433 Fall 2024

Passing Parameters to a Java Thread

51

Pass parameters as parameters to a class constructor

public class Worker extends Random

 implements Runnable {

 private int count;

 public Worker(int c) {

 count = c;

 }

 public void run () {

 for(int i = 0; i < count; i++){

 System.out.println(”Thread id " +

 Thread.currentThread();

 }

 }

}

CMSC433 Fall 2024

Passing Parameters to a Java Thread

52

Pass parameters as parameters to a class constructor

new Thread(new Worker(10))

CMSC433 Fall 2024

Passing Parameters to a Java Thread

53

Pass parameters as parameters to “setter” methods

public class WorkerThread extends Thread{

 private int count;

 public WorkerThread setCount(int c) {

 count = c;

 return this;

 }

 public void run () {

 for(int i = 0; i < count; i++){

 System.out.println(”Thread id " +

 Thread.currentThread();

 }

 }

}

CMSC433 Fall 2024

Passing Parameters to a Java Thread

54

Thread thread = new MyThread().setCount(10);

Use the fluent interface to pass parameter(s) when the thread is created

Returns MyThread

CMSC433 Fall 2024

Thread States?

Accessible via method Thread.State getState()

Thread.State is an enumerated type recording state of thread object
• NEW

A thread that has not yet started is in this state.

• RUNNABLE
A thread executing in the Java virtual machine is in this state.

• BLOCKED
A thread that is blocked waiting for a monitor lock is in this state.

• WAITING
A thread that is waiting indefinitely for another thread to perform a particular action is
in this state.

• TIMED_WAITING
A thread that is waiting for another thread to perform an action for up to a specified
waiting time is in this state.

• TERMINATED
A thread that has exited is in this state.

[Quoted from http://docs.oracle.com/javase/6/docs/api/java/lang/Thread.State.html]

55CMSC433 Fall 2024

Thread States

56CMSC433 Fall 2024

More on Thread States

Some Thread methods (e.g. start()) only applicable when object

is in correct state

The states NEW, RUNNABLE, TERMINATED are probably easiest to

understand

We will learn about the states BLOCKED, WAITING,

TIMED_WAITING later

57CMSC433 Fall 2024

Other Thread State Methods

boolean isAlive()

• Returns true if thread has been started but is not terminated

• t.isAlive() equivalent to

(t.getState() != NEW) && (t.getState() != TERMINATED)

void join()

• Blocks until thread terminates, then terminates

• t.join() very similar to

while (t.getState() != TERMINATED) { }

void join(int millis)

Like t.join() except that if t has not terminated in millis

milliseconds, then t.join(millis) nevertheless terminates

58CMSC433 Fall 2024

Threads and Process Termination

A process (JVM) terminates when “there is nothing left that has to

be done”

When does this hold?

• When the main thread terminates?

• When all threads terminate?

• When “the important” threads terminate?

A Java process can terminate if and only if all user threads

(including, but not only, main) have terminated

59CMSC433 Fall 2024

User Threads vs. Daemon Threads

Threads may be changed to daemon threads using
method setDaemon(boolean on)

• If the only nonterminated threads are daemons, then the JVM will

terminate

• Daemon threads should only be used for “background work”

(e.g. updating status bars, etc.) needed while “useful”

computation is being performed

setDaemon() is only valid if thread state is NEW;

otherwise, IllegalThreadStateException thrown

60CMSC433 Fall 2024

Methods for Interacting with Scheduler

void setPriority(int newPriority)

Set priority to given value (must be between MIN_PRIORITY and MAX_PRIORITY:
see below)

int getPriority()
Return priority value

static void yield()
“Hint” to scheduler that thread can give up processor

static void sleep(int millis)

Block for millis milliseconds

static int MIN_PRIORITY
Smallest (lowest) priority

static int MAX_PRIORITY
Largest (highest) priority

static int NORM_PRIORITY
Default priority

61CMSC433 Fall 2024

Thread Safety

We assume that the scheduler can interleave or overlap

threads arbitrarily

Data can be shared across threads

Can lead to interference

• Storage corruption

• Violation of representation invariant

• Violation of a protocol (e.g., A occurs before B)

62CMSC433 Fall 2024

Thread Safety

Programmer can have some influence via yield(),

setPriority(), etc.

But most decisions are outside user control, leading to

possibilities for

• Nondeterminism

• Interference: threads overwrite each other’s work

63CMSC433 Fall 2024

Example

public class Example extends Thread {
 private static int cnt = 0; // shared state
 public void run() {
 int y = cnt;
 cnt = y + 1;
 }

 public static void main(String args[]) {
 Thread t1 = new Example();
 Thread t2 = new Example();
 t1.start();
 t2.start();
 }
}

64CMSC433 Fall 2024

Example: t1 finishes before t2

run() {
 int y = cnt;
 cnt = y + 1;
}

65

run() {
 int y = cnt;
 cnt = y + 1;
}

t2

static int cnt = 0;

t1

cnt = 2;CMSC433 Fall 2024

Example: t2 finishes before t1

run() {
 int y = cnt;
 cnt = y + 1;
}

66

run() {
 int y = cnt;
 cnt = y + 1;
}

t2

static int cnt = 0;

t1

cnt = 2;CMSC433 Fall 2024

Example: t1 and t2 interleave

run() {
 int y = cnt; //y =0

 cnt = y + 1;//cnt=1

}

67

run() {

 int y = cnt; // y = 0
 cnt = y + 1; //cnt=1

}

t2

static int cnt = 0;

t1

cnt = 1; why? CMSC433 Fall 2024

What Happened?

The code read the counter value & then increments that value by

one

In the first example, t1 was preempted after it read the counter but

before it stored the new value.

When t1 resumed, it updated a stale value

This is an example of a data race

68CMSC433 Fall 2024

Two Threads
public class TwoThreads {
 public static class Thread1 extends Thread {
 public void run() {
 System.out.println("A");
 System.out.println("B");
 }
}
public static class Thread2 extends Thread {
 public void run() {
 System.out.println("1");
 System.out.println("2");
 }
}
public static void main(String[] args) {
 new Thread1().start();
 new Thread2().start();
}}

69CMSC433 Fall 2024

Two Threads
public class TwoThreads {
 public static class Thread1 extends Thread {
 public void run() {
 System.out.println("A");
 System.out.println("B");
 }
}
public static class Thread2 extends Thread {
 public void run() {
 System.out.println("1");
 System.out.println("2");
 }
}
public static void main(String[] args) {
 new Thread1().start();
 new Thread2().start();
}}

Output:

12AB

1A2B

1AB2

A12B

A1B2

AB12
70CMSC433 Fall 2024

	Slide 1: Concurrent Programming
	Slide 2: Recommended Textbook
	Slide 3: Concurrency?
	Slide 4: Why Concurrency?
	Slide 5: Why Concurrency? (cont.)
	Slide 6: Why Concurrency? (cont.)
	Slide 7: Why Concurrency? (cont.)
	Slide 8: Why Concurrency? (cont.)
	Slide 9: Threads are everywhere
	Slide 10: Why Not Teach It Sooner?
	Slide 11: Why Is Concurrency Hard?
	Slide 12: Visibility
	Slide 13: Concurrency is cool
	Slide 14: Parallel Sum Example
	Slide 15: Parallel Sum Example
	Slide 16: Parallel Sum Example
	Slide 17: Parallel Sum Example
	Slide 18: Speed Up
	Slide 19: Running a Sequential Program
	Slide 20: Java Memory Model
	Slide 21: More on Main Memory (MM)
	Slide 22: Memory Latency
	Slide 23: Concurrent Programs
	Slide 24: Concurrent vs. Parallel vs. Distributed
	Slide 25: An analogy
	Slide 26: An analogy
	Slide 27: Parallelism Example
	Slide 28: Concurrency Example
	Slide 29: Processes vs. Threads
	Slide 30: Processes vs. Threads
	Slide 31: Multi-threaded Process
	Slide 32: Running a Multi-Process/Multi-Threaded Application
	Slide 33: Threads, Processes and Processors
	Slide 34: A Reference Model for Distributed / Parallel / Concurrent Programs
	Slide 35: Language Support for Concurrency
	Slide 36: Java Threads
	Slide 37: Java Threads Are Objects
	Slide 38: Java Threads
	Slide 39: Giving Code to Java Threads
	Slide 40: Giving Code to Java Threads
	Slide 41: Implement the Runnable interface
	Slide 42: “Desired Functionality in run()”?
	Slide 43: Implementing Runnable Interface
	Slide 44: Implementing Runnable Interface
	Slide 45: Anonymous Inner Class
	Slide 46: Java 8: Lambda Expression
	Slide 47: Java 8: Lambda Expression
	Slide 48: Thread Implementation via Subclassing (Inheritance)
	Slide 49: Thread Implementation via Runnable
	Slide 50: Thread Creation
	Slide 51: Passing Parameters to a Java Thread
	Slide 52: Passing Parameters to a Java Thread
	Slide 53: Passing Parameters to a Java Thread
	Slide 54: Passing Parameters to a Java Thread
	Slide 55: Thread States?
	Slide 56: Thread States
	Slide 57: More on Thread States
	Slide 58: Other Thread State Methods
	Slide 59: Threads and Process Termination
	Slide 60: User Threads vs. Daemon Threads
	Slide 61: Methods for Interacting with Scheduler
	Slide 62: Thread Safety
	Slide 63: Thread Safety
	Slide 64: Example
	Slide 65: Example: t1 finishes before t2
	Slide 66: Example: t2 finishes before t1
	Slide 67: Example: t1 and t2 interleave
	Slide 68: What Happened?
	Slide 69: Two Threads
	Slide 70: Two Threads

