Announcements

- Midterm 10/23
- Guest Lecture 10/02, attendance is required.
- Dafny Counter Example:
 - dafny verify --extract-counterexample file.dfy

Verification debugging

<u>https://dafny.org/latest/DafnyRef/DafnyRef#sec-verification-debugging</u>

CMSC 433 Programming Language Technologies and Paradigms

DPLL (Davis-Putnam-Loveland-Logemann) Algorithm

Based on the slides from Ashutosh Gupta

DPLL Algorithm

- a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formula in conjunctive normal form (CNF).
- Davis–Putnam algorithm: Developed by Martin Davis and Hilary Putnam in 1960.
- DPLL is introduced in 1961 by Martin Davis, George Logemann and Donald W. Loveland and is a refinement of the Davis–Putnam algorithm.

Review

- Propositional satisfiability problem
 - Consider a propositional logic formula F.
 - Find a model m such that

$\mathsf{m} \models \mathsf{F}$.

- ► Example: Give a model of p1 ∧(¬p2 ∨ p3), find a model (satisfying assignment)
 - m = {p1→1, p2→0, p3→0}

Review

- Propositional variables are also referred as atoms
- A literal is either an atom or its negation
- A clause is a disjunction of literals.
- Since v is associative, commutative, and absorbs multiple occurrences, a clause may be referred as a set of literals

• Example:

- p is an atom but ¬p is not.
- ¬p and p both are literals.
- p V ¬p V p V q is a clause.
- {p, ¬p, q} is the same clause.

Conjunctive normal form(CNF)

- A formula is in CNF if it is a conjunction of clauses.
- Since ∧ is associative, commutative, and absorbs multiple occurrences, a CNF formula may be referred as a set of clauses
- Example:
 - ¬p and p both are in CNF.
 - (p ∨ ¬q) ∧ (r ∨ ¬q) ∧ ¬r in CNF.
 - { $(p \lor \neg q), (r \lor \neg q), \neg r$ } is the same CNF formula.
 - {{p,¬q},{r,¬q},{¬r}} is the same CNF formula.

CNF as Input for SAT

- ▶ We assume that the input formula to a SAT solver is always in CNF.
- Tseitin encoding can convert each formula into a CNF without any blowup.
 - introduces fresh variables
- Example
 - $z = x \land y$ add the clause $z \nleftrightarrow x \land y$ $\succ (x \lor \neg z) \land (y \lor \neg z) \land (\neg x \lor \neg y \lor z)$

A Naive SAT Solver

Brute Force Case Splitting: The SAT procedure chooses an atom p from the formula F, splits it into cases p and ¬p, and recursively applies itself to the cases until the formula becomes true or false.

```
Sat(F : formula ) : bool =
    if F = T then return true
    if F = ⊥ then return false
    p = choose_atom(F)
    Ft = subst F p true
    Ff = subst F p false
    Sat Ft || tat Ff
```

```
Example: Sat(p V q V ¬r)
```

The Naive SAT Solver is Slow

- SAT is NP-Complete.
- ▶ The naïve algorithm will experience the worst-case runtime of 2ⁿ.
- The Procedure STA may conclude the formula is satisfiable early. But for unsatisfiable formulas SAT won't terminate until it has exhausted all the possible variable assignments.

Partial Model

- Partial assignment assigns true/false values to some variables in the formula. Some variables remain unassigned.
- ► We will call a partial assignment of a formula F a partial model.
- Under partial model m,
 - a literal L is true if m(L) = 1 and
 - is false if m(L) = 0.
 - Otherwise, L is unassigned.
- Example:
 - Formula: p1 ∧ (¬p2 ∨ p3),
 - Partial model $m = \{p1 \rightarrow 0, p2 \rightarrow 1\}$

State of a Clause

- Under partial model m
 - A clause C is true if there is L∈C such that L is true and
 - C is false if for each $L \in C$, L is false.
 - Otherwise, C is unassigned.
- ▶ Example: Consider partial model $m = \{p1 \rightarrow 0, p2 \rightarrow 1\}$
 - States of the clause under m:

⊳ p1 ∨ p2 ∨ p3 is True

State of a Formula

- Under partial model m
 - CNF F is true if for each C∈F C is true and
 - CNF F is false if there is $C \in F$ such that C is false.
 - Otherwise, F is unassigned.
- Example: Consider partial model $m = \{p1 \rightarrow 0, p2 \rightarrow 1\}$
 - States of the Formula under m:

Unit Clause and Unit Literal

- C is a unit clause under m if exactly one literal L∈C is unassigned and the rest are false. L is called unit literal.
- Example
 - Consider partial model $m = \{p1 \rightarrow 0, p2 \rightarrow 1\}$

> p1 v \neg p3 v \neg p2 is a Unit clause.

- p1 and ¬p2 are false. p3 is unassigned.
- p3 is the unit literal.

p1 v ¬p3 v p4 is not a Unit clause

p1 v ¬p3 v p2 is not a Unit clause

DPLL (Davis-Putnam-Loveland-Logemann) Algorithm

- DPLL
 - Maintains a partial model, initially Ø, assigns no variable.
 - Assigns an unassigned variables 0 or 1 randomly one after another
 - Sometimes forced to choose assignments due to unit literals

DPLL(F) // Input: CNF F Output: sat / unsat return DPLL(F,Ø)

DPLL(F,m) //Input: CNF F, partial assignment m Output: sat / unsat

if F is true under m then return sat if F is false under m then return unsat

. . .

DPLL(F,m) //Input: CNF F, partial assignment m Output: sat / unsat

if F is true under m then return sat if F is false under m then return unsat

```
Choose an unassigned variable p and a random bit b \in \{0, 1\}
if DPLL(F, m[p\rightarrowb]) == sat then
return sat
else
return DPLL(F, m[p\rightarrow1-b])
```

DPLL(F,m) //Input: CNF F, partial assignment m Output: sat / unsat if F is true under m then return sat if F is false under m then return unsat

if ∃ unit literal p under m then
 return DPLL(F,m[p→1])
if ∃ unit literal ¬p under m then
 return DPLL(F,m[p→0])

Choose an unassigned variable p and a random bit $b \in \{0, 1\}$ if DPLL(F , m[p \rightarrow b]) == sat then return sat else

```
return DPLL(F, m[p\rightarrow1-b])
```


return DPLL(F, m[p \rightarrow 1-b])

Three actions of DPLL

- A DPLL run consists of three types of actions
 - Decision
 - Unit propagation
 - Backtracking
 - > Flips its decision, continue

A formula with 8 clauses and 7 variables:

```
c1 = (\neg p1 \lor p2)
c2 = (\neg p1 \lor p3 \lor p5)
c3 = (\neg p2 \lor p4)
c4=(¬p3 ∨ ¬p4)
c5 = (p1 \lor p5 \lor \neg p2)
c6 = (p2 \vee p3)
c7 = (p2 \vee \neg p3 \vee p7)
c8 = (p6 \lor \neg p5)
```

A formula with 8 clauses and 7 variables:

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \lor \neg p5)$

p_6

Randomly assign p6 to be 0

Blue: Causing unit propagation

A formula with 8 clauses and 7 variables:

```
c1 = (\neg p1 \lor p2)
c2 = (\neg p1 \lor p3 \lor p5)
c3=(\neg p2 \lor p4)
c4=(\neg p3 \lor \neg p4)
c5 = (p1 \lor p5 \lor \neg p2)
c6 = (p2 \lor p3)
c7 = (p2 \lor \neg p3 \lor p7)
c8 = (p6 \lor \neg p5)
```

Blue: Causing unit propagation

P5 became a unit literal.

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \lor p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

 p_6 p_5 0, c8 **p**₇ Randomly assign p7

to be 0

Blue: Causing unit propagation

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \lor p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

Blue: Causing unit propagation Green: true clauses

Randomly assign p1to be 1

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

Blue: Causing unit propagation Green: true clauses

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

Blue: Causing unit propagation Green: true clauses

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

Blue: Causing unit propagation Green: true clauses

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) $c5 = (p1 \lor p5 \lor \neg p2)$ $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \vee \neg p5)$

Blue: Causing unit propagation Green: true clauses

DPLL Optimizations

- DPLL allows many optimizations.
 - clause learning
 - As we decide and propagate, we construct a data structure, called implication graph, to observe the run and avoid unnecessary backtracking.

DPLL Run and Decision Level

- Run:
 - We call the current partial model a run of DPLL.
 - In the previous example, here is a run that has not reached to the conflict yet:

- Decision level
 - During a run, the decision level of a true literal is the number of decisions after which the literal was made true.
 - We write ¬p5@1 to indicate that ¬p5 was set to true after one decision.
 - > Similarly, we write $\neg p7@2$ and $\neg p6@1$.

- During the DPLL run, we maintain the following data structure:
 - Under a partial model m, the implication graph is a labeled DAG(N,E), where:
 - > N is the set of true literals under m and a conflict node
 - > E = {(L1, L2)|¬L1 ∈ causeClause(L2) and L2 \neq ¬L1}
 - causeClause(L) :
 - > clause due to which unit propagation made L true
 - > Ø for the literals of the decision variables

We also annotate each node with decision level.

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) c5 = (p1 ∨ p5 ∨ ¬p2) $c6 = (p2 \lor p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \lor \neg p5)$

Ô.

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) c5 = (p1 ∨ p5 ∨ ¬p2) $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \lor \neg p5)$

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) c5 = (p1 ∨ p5 ∨ ¬p2) $c6 = (p2 \vee p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \lor \neg p5)$

 $c1 = (\neg p1 \lor p2)$ $c2 = (\neg p1 \lor p3 \lor p5)$ c3=(¬p2 ∨ p4) c4=(¬p3 ∨ ¬p4) c5 = (p1 ∨ p5 ∨ ¬p2) $c6 = (p2 \lor p3)$ $c7 = (p2 \vee \neg p3 \vee p7)$ $c8 = (p6 \lor \neg p5)$

Conflict Clause

- We traverse the implication graph backwards to find the set of decisions that caused the conflict.
- The clause of the negations of the causing decisions is called conflict clause.
- Example: Conflict clause: p6 V ¬p1
 - p6 is set to 0 by the first decision
 - p1 is set to 1 by the third decision, literal ¬p1 is added in the conflict clause.
 - p5 decision does not contribute to the conflict, nothing is added

Clause Learning Example

9	1	3			5		
6		7				2	4
	5		8			7	
	7	9					
		2	9			4	3
				4		9	
	4			1	9		
7		6		9			5
		1		6	4		7

Clause learning

- Clause learning heuristics
 - add conflict clause in the input clauses and
 - backtrack to the second last conflicting decision, and proceed like DPLL
- Theorem: Adding conflict clause
 - Does not change the set of satisfying assignments
 - Implies that the conflicting partial assignment will never be tried again
- Multiple clauses can satisfy the above two conditions.
- If a clause satisfies the above two conditions, it is a conflict clause.

Clause learning:Example:

- In our running example, we added conflict clause p6 ∨ ¬p1. (¬p6 ∧ p1) ∧ F ⊨ False F ∧ ¬ (¬p6 ∧ p1) F ∧ (p6 ∨ p1)
- The second last decision in the clause is p6 = 0. We backtrack to it without flipping it. We run unit propagation p1 will be forced to be 0 due to the conflict clause.

Benefit of Adding Conflict Clauses

- Prunes away search space
- Records past work of the SAT solver
- Enables many other heuristics without much complications.
- Example:
 - In the previous example, we made decisions : m(p6) = 0, m(p7) = 0, and m(p1) = 1
 - We learned a conflict clause : p6 v ¬p1
 - Adding this clause to the input clauses results in
 m(p6) = 0, m(p7) = 1, and m(p1) = 1 will never be tried
 m(p6) = 0 and m(p1) = 1 will never occur simultaneously.

DPLL to CDCL (conflict driven clause learning)

- The optimized algorithm is called CDCL(conflict driven clause learning) instead of DPLL.
- Impact of clause learning was profound.

CDCL as an algorithm

Input: CNF F

 $m := \emptyset; dl := 0; dstack := \lambda x.0;$ dl stands for m := UNITPROPAGATION(m, F); decision level do

// backtracking while F is false under m do

if dl = 0 then return unsat; (C, dl) := ANALYZECONFLICT(m, F); $m.resize(dstack(dl)); F := F \cup \{C\};$ m := UNITPROPAGATION(m, F);

// Boolean decision

if F is unassigned under m then dstack records history dstack(dl) := m.size(); of backtracking dl := dl + 1; m := DECIDE(m, F); DEC m := UNITPROPAGATION(m, F); and

UNITPROPAGATION(m, F) - applies unit propagation

and extends m

ANALYZECONFLICT(m, F) - returns a conflict clause learned using implication graph and a decision level upto which the solver needs to backtrack

DECIDE(m, F) - chooses an unassigned variable in m and assigns a Boolean value

while *F* is unassigned or false under *m*; return sat

Efficiency of SAT solvers over the years

number of solved instances

Impact of SAT technology

- Impact is enormous.
- Probably, the greatest achievement of the first decade of this century in science after sequencing of human genome
- A few are listed here
- I Hardware verification and design assistance
 Almost all hardware/EDA companies have their own SAT solver
- I Planning: many resource allocation problems are convertible to SAT I Security: analysis of crypto algorithms
 I Solving hard problems, e. g., travelling salesman problem