
Announcements

Midterm 10/23

Guest Lecture 10/02, attendance is required.

Dafny Counter Example:

• dafny verify --extract-counterexample file.dfy

Verification debugging

• https://dafny.org/latest/DafnyRef/DafnyRef#sec-verification-debugging

1

https://dafny.org/latest/DafnyRef/DafnyRef
https://dafny.org/latest/DafnyRef/DafnyRef

CMSC 433

Programming Language Technologies and

Paradigms

DPLL (Davis-Putnam-Loveland-Logemann)

Algorithm

2CMSC433 Fall 2024

Based on the slides from Ashutosh Gupta

DPLL Algorithm

a complete, backtracking-based search algorithm for deciding the

satisfiability of propositional logic formula in conjunctive normal form

(CNF).

Davis–Putnam algorithm: Developed by Martin Davis and Hilary

Putnam in 1960.

DPLL is introduced in 1961 by Martin Davis, George Logemann and

Donald W. Loveland and is a refinement of the Davis–Putnam

algorithm.

3

Review

Propositional satisfiability problem

• Consider a propositional logic formula F.

• Find a model m such that

 m ⊨ F .

Example: Give a model of p1 ∧(¬p2 ∨ p3), find a model (satisfying

assignment)

• m = {p1→1, p2→0, p3→0}

4

Review

Propositional variables are also referred as atoms

 A literal is either an atom or its negation

A clause is a disjunction of literals.

Since ∨ is associative, commutative, and absorbs multiple

occurrences, a clause may be referred as a set of literals

Example:

• p is an atom but ¬p is not.

• ¬p and p both are literals.

• p ∨ ¬p ∨ p ∨ q is a clause.

• {p, ¬p, q} is the same clause.

5

Conjunctive normal form(CNF)

A formula is in CNF if it is a conjunction of clauses.

Since ∧ is associative, commutative, and absorbs multiple

occurrences, a CNF formula may be referred as a set of clauses

Example:

• ¬p and p both are in CNF.

• (p ∨ ¬q) ∧ (r ∨ ¬q) ∧ ¬r in CNF.

• {(p ∨ ¬q),(r ∨ ¬q), ¬r} is the same CNF formula.

• {{p,¬q},{r,¬q},{¬r}} is the same CNF formula.

6

CNF as Input for SAT

We assume that the input formula to a SAT solver is always in CNF.

Tseitin encoding can convert each formula into a CNF without any

blowup.

• introduces fresh variables

Example

• z = x ∧ y add the clause z x ∧ y

➢ (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)

7

A Naive SAT Solver

Brute Force Case Splitting: The SAT procedure chooses an atom p

from the formula F, splits it into cases p and ¬p, and recursively

applies itself to the cases until the formula becomes true or false.

8

Example: Sat(p ∨ q ∨ ¬r)

Sat(F : formula) : bool =

 if F = ⟙ then return true
 if F = ⟘ then return false
 p = choose_atom(F)

 Ft = subst F p true

 Ff = subst F p false

 Sat Ft || tat Ff

The Naive SAT Solver is Slow

9

SAT is NP-Complete.

The naïve algorithm will experience the worst-case runtime of 2n.

The Procedure STA may conclude the formula is satisfiable early.

But for unsatisfiable formulas SAT won’t terminate until it has

exhausted all the possible variable assignments.

Partial Model

Partial assignment assigns true/false values to some variables in

the formula. Some variables remain unassigned.

We will call a partial assignment of a formula F a partial model.

Under partial model m,

• a literal L is true if m(L) = 1 and

• is false if m(L) = 0.

• Otherwise, L is unassigned.

Example:

• Formula: p1 ∧ (¬p2 ∨ p3),

• Partial model m = {p1→ 0, p2→ 1}

10

State of a Clause

Under partial model m

• A clause C is true if there is L∈C such that L is true and

• C is false if for each L∈C, L is false.

• Otherwise, C is unassigned.

Example: Consider partial model m = {p1→ 0, p2→ 1}

• States of the clause under m:

➢ p1 ∨ p2 ∨ p3 is True

11

State of a Formula

Under partial model m

• CNF F is true if for each C∈F C is true and

• CNF F is false if there is C∈F such that C is false.

• Otherwise, F is unassigned.

Example: Consider partial model m = {p1→0, p2→1}

• States of the Formula under m:

➢ (p3 ∨ ¬p1) ∧ (p1 ∨ ¬p2) is False

12

False

Unit Clause and Unit Literal

C is a unit clause under m if exactly one literal L∈C is unassigned

and the rest are false. L is called unit literal.

Example

• Consider partial model m = {p1→0, p2→1}

➢ p1 ∨ ¬p3 ∨ ¬p2 is a Unit clause.

• p1 and ¬p2 are false. p3 is unassigned.

• p3 is the unit literal.

➢ p1 ∨ ¬p3 ∨ p4 is not a Unit clause

➢ p1 ∨ ¬p3 ∨ p2 is not a Unit clause

13

DPLL (Davis-Putnam-Loveland-Logemann) Algorithm

DPLL

• Maintains a partial model, initially ∅, assigns no variable.

• Assigns an unassigned variables 0 or 1 randomly one after

another

• Sometimes forced to choose assignments due to unit literals

14

DPLL

DPLL(F)

 // Input: CNF F Output: sat / unsat

 return DPLL(F,∅)

15

DPLL

DPLL(F,m)

 //Input: CNF F, partial assignment m Output: sat / unsat

 if F is true under m then return sat

 if F is false under m then return unsat

16

DPLL

DPLL(F,m)

 //Input: CNF F, partial assignment m Output: sat / unsat

 if F is true under m then return sat

 if F is false under m then return unsat

 …

 Choose an unassigned variable p and a random bit b ∈ {0, 1}

 if DPLL(F, m[p→b]) == sat then

 return sat

 else

 return DPLL(F, m[p→1-b])

17

DPLL

DPLL(F,m)

 //Input: CNF F, partial assignment m Output: sat / unsat

 if F is true under m then return sat

 if F is false under m then return unsat

 if ∃ unit literal p under m then

 return DPLL(F,m[p→1])

 if ∃ unit literal ¬p under m then

 return DPLL(F,m[p→0])

 Choose an unassigned variable p and a random bit b ∈ {0, 1}

 if DPLL(F , m[p→b]) == sat then

 return sat

 else

 return DPLL(F, m[p→1-b])

18

DPLL

DPLL(F,m)

 //Input: CNF F, partial assignment m Output: sat / unsat

 if F is true under m then return sat

 if F is false under m then return unsat

if ∃ unit literal p under m then

 return DPLL(F,m[p→1])

if ∃ unit literal ¬p under m then

 return DPLL(F,m[p→0])

Choose an unassigned variable p and a random bit b ∈ {0, 1}

 if DPLL(F , m[p→b]) == sat then

 return sat

 else

 return DPLL(F, m[p→1-b])

19

Unit Propagation

Decision

Backtrack at conflict

Three actions of DPLL

A DPLL run consists of three types of actions

• Decision

• Unit propagation

• Backtracking

➢Flips its decision, continue

20

DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

21

DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

Blue: Causing unit propagation 22

p6

0

Randomly assign p6

to be 0

DPLL Example

A formula with 8 clauses and 7 variables:

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

Blue: Causing unit propagation
23

p6

0

p5

0, c8

P5 became a unit

literal.

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

Blue: Causing unit propagation

24

p6

0

p5

0, c8

p7

0

Randomly assign p7

to be 0

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

Blue: Causing unit propagation

Green: true clauses

25

p6

0

p5

0, c8

p7

0

p1

1

Randomly assign

p1to be 1

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

26

p6

0
p5

0,c8
p7

0

p1
1

Blue: Causing unit propagation

Green: true clauses

p3

1, c2
Unit literal

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

27

p6

0
p5

0,c8
p7

0

p1
1

Blue: Causing unit propagation

Green: true clauses

p3

1, c2

Unit literal
p2

1, c1

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

28

p6

0
p5

0,c8
p7

0

p1
1

Blue: Causing unit propagation

Green: true clauses

p3

1, c2

Unit literal

p2

1, c1

p4

1, c3

c4 conflict

DPLL Example

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

29

p6

0
p5

0,c8
p7

0

p1
1

Blue: Causing unit propagation

Green: true clauses

p3

1, c2
Backtrack

to the last

decisionp2

1, c1

p4

1, c3

c4 conflict

0

DPLL Optimizations

DPLL allows many optimizations.

• clause learning

• As we decide and propagate, we construct a data structure,

called implication graph, to observe the run and avoid

unnecessary backtracking.

30

Run:

• We call the current partial model a run of DPLL.

• In the previous example, here is a run that has not reached to the

conflict yet:

Decision level

• During a run, the decision level of a true literal is the number of

decisions after which the literal was made true.

➢We write ¬p5@1 to indicate that ¬p5 was set to true after one

decision.

➢Similarly, we write ¬p7@2 and ¬p6@1.

DPLL Run and Decision Level

31

p6

0
p5

0,c8
p7

0

Implication Graph

During the DPLL run, we maintain the following data structure:

• Under a partial model m, the implication graph is a labeled

DAG(N,E), where:

➢ N is the set of true literals under m and a conflict node

➢ E = {(L1, L2)|¬L1 ∈ causeClause(L2) and L2 ≠ ¬L1}

• causeClause(L) :

➢ clause due to which unit propagation made L true

➢ ∅ for the literals of the decision variables

We also annotate each node with decision level.

32

L1 ∨ L2

¬L1 →L2

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

33

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

34

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

35

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

36

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

37

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

38

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

39

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

40

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Implication Graph

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3=(¬p2 ∨ p4)

c4=(¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

41

p6

0
p5

0,c8
p7

0

p1
1

p3

1, c2

p2

1, c1

p4

1, c3

c4 conflict

0

Conflict Clause

42

We traverse the implication graph

backwards to find the set of decisions

that caused the conflict.

The clause of the negations of the

causing decisions is called conflict

clause.

Example: Conflict clause: p6 ∨ ¬p1

• p6 is set to 0 by the first decision

• p1 is set to 1 by the third decision,

literal ¬p1 is added in the conflict

clause.

• p5 decision does not contribute to the
conflict, nothing is added

Clause Learning Example

43

Clause learning

Clause learning heuristics

• add conflict clause in the input clauses and

• backtrack to the second last conflicting decision, and proceed like

DPLL

Theorem: Adding conflict clause

• Does not change the set of satisfying assignments

• Implies that the conflicting partial assignment will never be tried

again

Multiple clauses can satisfy the above two conditions.

If a clause satisfies the above two conditions, it is a

conflict clause.

44

Clause learning:Example:

In our running example, we

added conflict clause p6 ∨ ¬p1.

(¬p6 ∧ p1) ∧ F ⊨ False

F ∧ ¬ (¬p6 ∧ p1)

F ∧ (p6 ∨ p1)

The second last decision in the

clause is p6 = 0. We backtrack

to it without flipping it. We run

unit propagation p1 will be

forced to be 0 due to the conflict

clause.

45

Benefit of Adding Conflict Clauses

Prunes away search space

Records past work of the SAT solver

Enables many other heuristics without much complications.

Example:

• In the previous example, we made decisions : m(p6) = 0, m(p7) =

0, and m(p1) = 1

• We learned a conflict clause : p6 ∨ ¬p1

• Adding this clause to the input clauses results in

➢m(p6) = 0, m(p7) = 1, and m(p1) = 1 will never be tried

➢m(p6) = 0 and m(p1) = 1 will never occur simultaneously.

46

DPLL to CDCL (conflict driven clause learning)

The optimized algorithm is called CDCL(conflict driven clause

learning) instead of DPLL.

Impact of clause learning was profound.

47

CDCL as an algorithm

48

Efficiency of SAT solvers over the years

49

Impact of SAT technology

Impact is enormous.

Probably, the greatest achievement of the first decade of this century in science
after sequencing of human genome

A few are listed here

I Hardware verification and design assistance
Almost all hardware/EDA companies have their own SAT solver

I Planning: many resource allocation problems are convertible to SAT I Security:
analysis of crypto algorithms
I Solving hard problems, e. g., travelling salesman problem

50

	Slide 1: Announcements
	Slide 2: CMSC 433 Programming Language Technologies and Paradigms
	Slide 3: DPLL Algorithm
	Slide 4: Review
	Slide 5: Review
	Slide 6: Conjunctive normal form(CNF)
	Slide 7: CNF as Input for SAT
	Slide 8: A Naive SAT Solver
	Slide 9: The Naive SAT Solver is Slow
	Slide 10: Partial Model
	Slide 11: State of a Clause
	Slide 12: State of a Formula
	Slide 13: Unit Clause and Unit Literal
	Slide 14: DPLL (Davis-Putnam-Loveland-Logemann) Algorithm
	Slide 15: DPLL
	Slide 16: DPLL
	Slide 17: DPLL
	Slide 18: DPLL
	Slide 19: DPLL
	Slide 20: Three actions of DPLL
	Slide 21: DPLL Example
	Slide 22: DPLL Example
	Slide 23: DPLL Example
	Slide 24: DPLL Example
	Slide 25: DPLL Example
	Slide 26: DPLL Example
	Slide 27: DPLL Example
	Slide 28: DPLL Example
	Slide 29: DPLL Example
	Slide 30: DPLL Optimizations
	Slide 31: DPLL Run and Decision Level
	Slide 32: Implication Graph
	Slide 33: Implication Graph
	Slide 34: Implication Graph
	Slide 35: Implication Graph
	Slide 36: Implication Graph
	Slide 37: Implication Graph
	Slide 38: Implication Graph
	Slide 39: Implication Graph
	Slide 40: Implication Graph
	Slide 41: Implication Graph
	Slide 42: Conflict Clause
	Slide 43: Clause Learning Example
	Slide 44: Clause learning
	Slide 45: Clause learning:Example:
	Slide 46: Benefit of Adding Conflict Clauses
	Slide 47: DPLL to CDCL (conflict driven clause learning)
	Slide 48: CDCL as an algorithm
	Slide 49: Efficiency of SAT solvers over the years
	Slide 50: Impact of SAT technology

