
CMSC 433

Programming Language Technologies and

Paradigms

SAT Solvers

1CMSC433 Fall 2024

Borrowed slides from Aarti Gupta, Sharad Malik, Emina Torlak

How Does Dafny work?

Boogie is an intermediate verification language, intended as a layer

on which to build program verifiers for other languages.

2

Dafny

Program

Boogie SMT Solver

(Z3)

Boolean Satisfiability (SAT) Solvers

Given a propositional logic (Boolean) formula,

Find a variable assignment such that the formula evaluates to true, or prove

that no such assignment exists.

3

F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)

SAT Solvers

Engines for solving any problem reducible to propositional logic

• Input: Propositional formula f

• Output: SAT + valuation v such that v (f) = T if f satisfiable

 UNSAT: otherwise

4

v(p)= T

v(q) = F

v(r) = F

SAT is NP-Complete

For n variables, there are 2n possible truth assignments to be

checked.

First established NP-Complete problem. (Stephen A. Cook 1971)

5

F = (x1 ∨ x2) ^ (x3 ∨ x4 ∨ ¬x5)

Sat Solvers Timeline

6

DPLL 2004

Z3 2008

Problem size: We went from 10 variables, 20 constraints (early

90’s) to 1M+ variables and 5M+ constraints in 20 years.

Where are we today?

Intractability of the problem no longer daunting

• can regularly solve practical instances with millions of variables

and constraints

SAT has matured from theoretical interest to practical impact

• Widely used in many aspects of chip design (Electronic Design

Automation): equivalence checking, assertion verification,

synthesis, debugging, post-silicon validation

• Software verification

➢ Commercial use at Microsoft, Amazon, Google, Facebook,...

7

Where are we today?

Significant SAT community

• SatLive Portal (http://www.satlive.org/)

• Annual SAT competitions (http://www.satcompetition.org/)

• SAT Conference (http://www.satisfiability.org/)

Emboldened researchers to take on even harder problems related

to SAT

• Max-SAT: for optimization

• Satisfiability Modulo Theories (SMT): for more expressive

theories

• Quantified Boolean Formulas (QBF): for more complex problems

8

http://www.satlive.org/

Propositional Logic: Syntax

• Atom:

➢ truth symbols: ⊤ (“true”), ⊥ (“false”)

➢ propositional variables: p,q,r,...

• Literal

➢ an atom α or its negation ¬α

• Formula:

➢ an atom or the application of a logical connective to formulas F1, F2 :

• ¬F1 “not” (negation)

• F1 ∧ F2 “and” (conjunction)

• F1 ∨ F2 “or” (disjunction)

• F1 → F2 “implies” (implication)

• F1 F2 “if and only if” (iff)

9

Propositional Logic: Semantics

Given a Boolean formula F, and an Interpretation I, which maps

variables to true/false

I is a satisfying interpretation of F, written as I ⊨ F, if F evaluates

to true under I.

• A satisfying interpretation is also called a model.

I is a falsifying interpretation of F, written as I ⊭ F, if F evaluates

to false under I.

10

I :{ p↦true,q↦false,...}

Propositional Logic: Semantics

Definition

• Base case

➢ I ⊨ ⊤

➢ I ⊭ ⊥

➢ I ⊨ p iff I[p]=true

➢ I ⊭ p iff I[p]=false

11

Propositional Logic: Semantics

Definition

• Inductive cases:

➢ I ⊨¬F iff I ⊭ F

➢ I ⊨ F1 ∧ F2 iff I ⊨F1 and I ⊨ F2

➢ I ⊨ F1 ∨ F2 iff I ⊨ F1 or I ⊨ F2

➢ I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

➢ I ⊨ F1 F2 iff I ⊨ F1 and I ⊨ F2, or I ⊭ F1 and I ⊭ F2

12

Truth Table

13

A truth table shows whether a propositional formula is true or

false for each possible truth assignment.

P Q ¬P P→Q ¬P∧(P→Q)

T T F T F

T F F F F

F T T T T

F F T T T

Propositional Logic: Semantics

Example

14

F: (p∧q)→(p∨¬q)

I: {p ↦ true, q ↦ false}

Propositional Logic: Semantics

Example

15

F: (p∧q)→(p∨¬q)

I: {p ↦ true, q ↦ false}

I ⊨ F, I is a satisfying

interpretation of F

Satisfiability & Validity of Propositional Formulas

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity: F is valid iff ¬F is unsatisfiable.

• If we have a procedure for checking satisfiability, we can also

check validity of propositional formulas, and vice versa.

16

Techniques for Deciding Satisfiability & Validity

Search

• Enumerate all interpretations (i.e., build a truth table), and check

that they satisfy the formula.

Deduction

• Assume the formula is invalid, apply proof rules, and check for

contradiction in every branch of the proof tree.

17

Proof by Search: enumerating interpretations

18

p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

Proof by Search: enumerating interpretations

19

p q p∧q ¬q p ∨ ¬q F:

F F F T T T

F T F F F T

T F F T T T

T T T F T T

F : (p∧q)→(p∨¬q) I ⊨ F1 →F2 iff I ⊭ F1 or I ⊨ F2

Valid

Proof by Deduction: semantic arguments

A proof rule consists of

• premise: facts that must hold to apply the rule.

• conclusion: facts derived from applying the rule.

Commas indicate derivation of multiple facts; pipes indicate

alternative facts (branches in the proof).

20

Premise

Conclusion

Proof by Deduction: semantic arguments

21

Proof by Deduction: semantic arguments

22

Proof by deduction: another example 1

Prove p ∧ ¬q is valid or find a falsifying interpretation.

23

1. I ⊭ p ∧ ¬q (assumed)

a. I ⊭ p (1, ∧)

b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b,¬)

The formula is invalid, and I = {p↦false,q↦true} is a falsifying

interpretation.

Proof by deduction: another example 2

Prove (p∧(p→q))→q or find a falsifying interpretation.

24

We have reached a contradiction in every branch of

the proof, so the formula is valid.

1. I ⊭ (p ∧ (p→q))→q

2. I ⊭ q (1,→)

3. I ⊨ (p ∧ (p→q)) (1,→)

4. I ⊨ p (3,∧)

5. I ⊨ p→q (3,∧)

1. I ⊭ p (5,→)

2. I ⊨ q (5,→)

I ⊨ F1 →F2 iff

I ⊭ F1 or I ⊨ F2

Semantic Judgement

Formulas F1 and F2 are equivalent, written F1 ⟺ F2, iff F1 F2 is

valid.

Formula F1 implies F2, written F1 ⟹ F2, iff F1 → F2 is valid.

F1 ⟺F2 and F1 ⟹F2 are not propositional formulas (not part of

syntax). They are properties of formulas, just like validity or

satisfiability.

25

Normal Form

A normal form for a logic is a syntactic restriction such that every

formula in the logic has an equivalent formula in the normal form.

• Assembly language for a logic.

Three important normal forms for propositional logic:

• Negation Normal Form (NNF)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF)

26

Negation Normal Form (NNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

The only allowed connectives are ∧, ∨, and ¬. ¬ can appear only in

literals.

Conversion to NNF performed using DeMorgan’s Laws:

¬(F ∧ G) ⟺ ¬F ∨ ¬G

¬(F ∨ G) ⟺ ¬F ∧ ¬G

27

NNF Examples

The following formulae are all in negation normal form:

 The following formulae are not in negation normal form:

28

Disjunctive Normal Form (DNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

29

To convert to DNF, convert to NNF and distribute ∧ over ∨:

(F∧(G∨H))⟺ (F∧G)∨(F∧H)

((G∨H)∧F)⟺ (G∧F)∨(H∧F)

• Disjunction of

conjunction of literals.

• Deciding satisfiability of

a DNF formula is trivial.

DNF Examples

The following formulas are in DNF:

The following formulas are not in DNF:

30

Conjunctive Normal Form (CNF)

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F∨(G∧H))⟺ (F∨G)∧(F∨H)

((G∧H)∨F)⟺ (G∨F)∧(H∨F)

31

• Conjunction of disjunction of

literals.

• Deciding the satisfiability of a CNF

formula is hard.

• SAT solvers use CNF as their input

language.

However, this can result in an exponential increase in equation size.

CNF Examples

the following formulas are in conjunctive normal form:

The following formulas are not in conjunctive normal form:

32

Translation to CNF: Example

33

(x1 ∧ x2) ∨ (¬ (x3 ∧ ¬ x4))

= (x1 ∧ x2) ∨ (¬ x3 ∨ ¬(¬ x4)) ... #de Mogans’s Law

= (x1 ∧ x2) ∨ (¬ x3 ∨ x4) ... ¬ simplification

=(x1 ∨ ¬ x3 ∨ x4)∧(x2 ∨ ¬ x3 ∨ x4) ...#Distribute (x1 ∧ x2)

= (x1 ∨ ¬ x3 ∨ x4) ∧ (x2 ∨ ¬ x3 ∨ x4)

Tseitin Transformation Example

Main idea: Introduce fresh

variable for each subformula and

write ”equations”

34

New variables: y1, y2, y3, y4, y5

Equations

y1 = x1 ∧ x2

y2 = y1 ∨ y3

y3 = ¬ y4

y4 = x3 ∧ y5

y5 = ¬ x4

Equation CNF to implement the Equation

z = ¬ x (x ∨ z) ∧ (¬ x ∨ ¬ z)
z = x ∧ y (x ∨ ¬z) ∧ (y ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)
z = x ∨ y (¬x ∨ z) ∧ (¬y ∨ z) ∧ (x ∨ y ∨ ¬z)

CNF

(x1 ∨ ¬ y1) ∧ (x2 ∨ ¬ y1) ∧ (¬ x1 ∨ ¬ x2
∨ y1) ∧ (¬ y1 ∨ y2) ∧ (¬ y3 ∨ y2) ∧ (y1 ∨
y3 ∨ ¬ y2) ∧ (y3 ∨ y4) ∧ (¬ y3 ∨ ¬ y4) ∧
(x3 ∨ ¬ y4) ∧ (y5 ∨ ¬ y4) ∧ (¬ x3 ∨ ¬ y5
∨ y4) ∧ (x4 ∨ y5) ∧ (¬ x4 ∨ ¬ y5) ∧

(y2)

Tseitin Transformation

Main idea: Introduce fresh variable for each subformula and write

”equations”

Correctness of Tseitin transformation

• For a given formula f, let Tseitin(f) denote the generated CNF

formula

• Size of Tseitin(f) is linear in the size of f

• Tseitin(f) is equi-satisfiable with f

• i.e., Tseitin(f) is satisfiable if and only if f is satisfiable

35

Solving real problems with SAT

N-Queens Problem

• Given an N x N chess board, find a placement of N queens such

that no two queens can take each other

36

N-Queens as a SAT

Introduce variables xi j for 0 ≤ i,j < N,

• xij = T if queen at position (i,j) F otherwise

Constraints

• Exactly one queen per row

➢Rowi = xij, j=0…N-1

• Exactly one queen per column

➢Columnj = xij, i=0…N-1

• At most one queen on diagonal

➢Diagonalk- = xij, i-j = k = -N+1…,N-1

➢Diagonalk+ = xij, i+j = k = 0…,2N-2

37

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

4-Queens SAT input

38

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in row I

• xi0 xi1 xi2 xi3

• xi0→ xi1 xi2 xi3

• xi1→ xi2 xi3

• xi2→ xi3

4-Queens SAT input

39

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

Exactly one queen in column j

• x0j x1j x2j x3j

• x0j→ x1j x2j x3j

• x1j→ x2j x3j

• x2j→ x3j

4-Queens SAT input

40

00 01 02 03

1310 11 12

20 21 22 23

3330 31 32

At most one queen in diagonal k-

• x20→ x31

• …

• x00→ x11 x22 x33

• x11→ x22 x33

• x22→ x33

• …

• x02→ x13

N-queens Demo

41

	Slide 1: CMSC 433 Programming Language Technologies and Paradigms
	Slide 2: How Does Dafny work?
	Slide 3: Boolean Satisfiability (SAT) Solvers
	Slide 4: SAT Solvers
	Slide 5: SAT is NP-Complete
	Slide 6: Sat Solvers Timeline
	Slide 7: Where are we today?
	Slide 8: Where are we today?
	Slide 9: Propositional Logic: Syntax
	Slide 10: Propositional Logic: Semantics
	Slide 11: Propositional Logic: Semantics
	Slide 12: Propositional Logic: Semantics
	Slide 13: Truth Table
	Slide 14: Propositional Logic: Semantics
	Slide 15: Propositional Logic: Semantics
	Slide 16: Satisfiability & Validity of Propositional Formulas
	Slide 17: Techniques for Deciding Satisfiability & Validity
	Slide 18: Proof by Search: enumerating interpretations
	Slide 19: Proof by Search: enumerating interpretations
	Slide 20: Proof by Deduction: semantic arguments
	Slide 21: Proof by Deduction: semantic arguments
	Slide 22: Proof by Deduction: semantic arguments
	Slide 23: Proof by deduction: another example 1
	Slide 24: Proof by deduction: another example 2
	Slide 25: Semantic Judgement
	Slide 26: Normal Form
	Slide 27: Negation Normal Form (NNF)
	Slide 28: NNF Examples
	Slide 29: Disjunctive Normal Form (DNF)
	Slide 30: DNF Examples
	Slide 31: Conjunctive Normal Form (CNF)
	Slide 32: CNF Examples
	Slide 33: Translation to CNF: Example
	Slide 34: Tseitin Transformation Example
	Slide 35: Tseitin Transformation
	Slide 36: Solving real problems with SAT
	Slide 37: N-Queens as a SAT
	Slide 38: 4-Queens SAT input
	Slide 39: 4-Queens SAT input
	Slide 40: 4-Queens SAT input
	Slide 41: N-queens Demo

