
MPI+X: Hybrid Programming
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Assignment 1-3 grades have been released

• Assignment 4 has been posted, due on Nov 6 11:59 pm eastern time

• Extra credit assignments: same weight as other programming assignments for each
section (10% of course grade for 416 students and 8% of course grade for 616
students)

2

Abhinav Bhatele (CMSC416 / CMSC616)

Complex node architectures

3

Perlmutter @ NERSC

CPU Node

GPU Node

64 cores

Abhinav Bhatele (CMSC416 / CMSC616)

Complex node architectures

3

Perlmutter @ NERSC

CPU Node

GPU Node

64 cores

Abhinav Bhatele (CMSC416 / CMSC616)

Several possible approaches

• Use MPI everywhere

• Lets say you are running on 2 nodes with 128 cores each — create 256 MPI processes

• Use MPI+X where X handles within node parallelization

• MPI handles inter-node communication

• Also referred to as hybrid programming

• X could be OpenMP for CPUs and CUDA for GPUs

• CPU nodes: Create 1 MPI process and 128 threads per node

• GPU nodes: Create 1 MPI process per GPU and use CUDA for launching GPU kernels

4

Abhinav Bhatele (CMSC416 / CMSC616)

Why use hybrid programming?

• Processes are heavy-weight

• Using MPI everywhere can lead to a large number of messages

• Using threads can enable better sharing of data on symmetric multi-processing (SMP)
and multi-core nodes

• Larger grain size (per MPI process) can help with fewer overheads

• Required when you have GPUs attached to a node

5

Abhinav Bhatele (CMSC416 / CMSC616)

What are our choices for X

• CPUs: OpenMP, pthreads, RAJA, Kokkos, …

• GPUs: CUDA, HIP, OpenMP offload, RAJA, Kokkos, …

• Notice that some models can be used on both CPUs and GPUs

• Referred to as “portable” programming models

• Allow use to right a single code that can run on the CPU or GPU

6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil: MPI+OpenMP

7

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil: MPI+OpenMP

7

int main(int argc, char *argv) {
 ...

 for(int t=0; t<num_steps; t++) {

 MPI_Irecv(&data1, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Irecv(&data2, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Isend(&data3, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Isend(&data4, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Waitall(…);

 compute();
 }
 ...
}

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil: MPI+OpenMP

7

int main(int argc, char *argv) {
 ...

 for(int t=0; t<num_steps; t++) {

 MPI_Irecv(&data1, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Irecv(&data2, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Isend(&data3, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Isend(&data4, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Waitall(…);

 compute();
 }
 ...
}

pragma omp parallel for
for(i ...)
 for(j ...)
 A_new[i, j] = (A[i, j] + A[i-1, j] + …

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil: MPI+OpenMP

7

int main(int argc, char *argv) {
 ...

 for(int t=0; t<num_steps; t++) {

 MPI_Irecv(&data1, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Irecv(&data2, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Isend(&data3, 16, MPI_DOUBLE, (myrank-1)%4, 0, ...);
 MPI_Isend(&data4, 16, MPI_DOUBLE, (myrank+1)%4, 0, ...);

 MPI_Waitall(…);

 compute();
 }
 ...
}

pragma omp parallel for
for(i ...)
 for(j ...)
 A_new[i, j] = (A[i, j] + A[i-1, j] + …

Wraparound

Abhinav Bhatele (CMSC416 / CMSC616)

Different methods for MPI communication

• MPI_THREAD_SINGLE: all MPI communication is done by the main OpenMP thread
outside of OpenMP regions

• MPI_THREAD_FUNNELED: all MPI communication is done by the main OpenMP
thread inside OpenMP regions

• MPI_THREAD_SERIALIZED: multiple threads call MPI routines but one thread at a
time

• MPI_THREAD_MULTIPLE: multiple threads call MPI routines, potentially
simultaneously

8

Abhinav Bhatele (CMSC416 / CMSC616)

Thread support in MPI

9

Using MPI with multithreadingUsing MPI with multithreading
CSC Training, 2021

67

Thread support in MPIThread support in MPI

MPI only

(MPI_THREAD_SINGLE)

MPI only on main thread
(MPI_THREAD_FUNNELED)

OpenMP only

Only one thread
will execute

(MPI_THREAD_SERIALIZED)
No concurrent MPI calls

(MPI_THREAD_MULTIPLE)
No restrictions

MPI on more
than one thread

Hybrid
MPI + OpenMP

68

https://events.prace-ri.eu/event/1225/attachments/1632/3145/Lecture slides_Hybrid CPU programming with OpenMP and MPI @ CSC (PTC | ONLINE), 4.10-5.10.2021.pdf

Abhinav Bhatele (CMSC416 / CMSC616)

Number of threads vs. processes

• It depends!

10

Abhinav Bhatele (CMSC416 / CMSC616)

Process and thread affinity

• Normally, the OS can run processes and threads on any core, and even move them
around

• For performance, it’s best to pin processes/threads to specific cores

• Use slurm options such as --tasks-per-node and --cpus-per-task to spread tasks apart

• Pinning: --cpu-bind, OMP_PROC_BIND

11

Abhinav Bhatele (CMSC416 / CMSC616)

MPI+CUDA

• Typically let one MPI process manage each GPU

• Send data to other nodes using the MPI processes on each node

12

MPI_Comm_rank(icomm, &myrank); // my MPI rank

int deviceCount;
cudaGetDeviceCount(&deviceCount); // How many GPUs?

int device_id = myrank % deviceCount;
cudaSetDevice(device_id); // Map MPI process to a GPU

Abhinav Bhatele (CMSC416 / CMSC616)

Sending messages to other GPUs/nodes

• Copy data from device to host and then send messages between MPI processes

• GPU-aware MPI: You can provide GPU memory pointers in the MPI_Isend/MPI_Irecv
calls

• Avoids the device to host memcpy in user code

• The runtime might still do a copy

• MPI built with GPUDirect: When enabled, it avoids an extra copy and directly sends
data between GPUs on different nodes

13

