
CMSC 216
Introduction to Computer Systems

Ekesh Kumar
Prof. Nelson Padua-Perez • Summer 2019, Section 0101 • University of Maryland

http://www.cs.umd.edu/class/summer2019/cmsc216/

Last Revision: November 15, 2019

Contents

1 Tuesday, May 28, 2019 6

Logistics . 6

Basic Unix Commands . 6

Introduction to C Programming . 6

2 Wednesday, May 29, 2019 8

More Unix Commands . 8

Compilation Stages of a C Program . 8

Variables in C . 9

3 Friday, May 31, 2019 10

printf() and scanf() . 10

Control Statements . 11

Functions . 11

4 Monday, June 3, 2019 12

The sizeof Operator . 12

Introduction to Pointers . 12

Pointers as Parameters . 13

5 Tuesday, June 4, 2019 15

Identifier Scopes . 15

http://www.cs.umd.edu/class/summer2019/cmsc216/

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

6 Wednesday, June 5, 2019 16

Invalid Uses of Pointers . 16

Null Pointers . 17

Introduction to Arrays . 17

Arrays as Parameters . 17

7 Monday, June 10, 2019 18

Pointing to a Local Variable . 18

String Comparison . 18

Copying Strings . 19

String Literals . 20

Void Pointers . 20

Pointers to Pointers . 21

8 Wednesday, June 12, 2019 22

Command Line Parameters . 22

Two-Dimensional Arrays . 23

Two-Dimensional Character Arrays . 23

The typedef Keyword . 23

An Exception to Typedef . 23

Structures . 24

Combining Typedefs with Structs . 25

Pointers to Structures . 25

9 Monday, June 17, 2019 26

Exit Codes . 26

Text and Binary Streams . 26

Standard Input/Output . 27

10 Wednesday, June 19, 2019 29

The scanf() Family . 29

The printf() Family . 29

Dynamic Memory Allocation . 29

11 Friday, June 21, 2019 32

Recap of Dynamic Memory Allocation . 32

Dynamically Allocated Structures . 32

Pointer Aliases . 33

Common Errors . 34

12 Monday, June 24, 2019 35

Linked Lists . 35

2

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

13 Wednesday, June 26, 2019 38

Operating on Memory Blocks . 38

Function Pointers . 38

14 Thursday, June 27, 2019 40

Memcpy and Memset . 40

Searching Files with Grep . 41

Data Representation . 41

Character Representation . 41

Integers . 41

Floats and Doubles . 42

Imprecision with Real Numbers . 42

15 Monday, July 1, 2019 43

Unix File Permissions . 43

Introduction to Assembly Language . 43

An Illustrative Example . 44

16 Tuesday, July 2, 2019 46

Data Space Instructions . 46

Instructions List . 47

Caller/Callee Saving . 47

Arguments and Return Values . 48

Accessing Memory . 49

17 Wednesday, July 3, 2019 51

More on Register Pointers . 51

Instruction Encoding and the Status Register . 53

Branch Instructions . 53

18 Monday, July 8, 2019 57

Large Addition and Unsigned Multiplication . 57

Even More on Register Pointers . 59

The Call Stack and Recursion . 59

19 Tuesday, July 9, 2019 61

Encapsulation and Abstraction . 61

Miscellaneous . 61

3

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

20 Wednesday, July 10, 2019 62

Process Control Terminology . 62

System Calls . 62

Processes vs. Threads . 62

Signals . 63

Creating Processes . 64

21 Friday, July 12, 2019 68

Reaping Child Processes . 68

Environmental Variables . 71

Nested Processes . 72

22 Monday, July 15, 2019 74

Hiding Processes . 74

The waitpid() System Call . 74

Unix I/O . 77

File Operations . 78

23 Wednesday, July 17, 2019 81

Unix I/O Redirection . 81

Introduction to Pipes . 84

24 Friday, July 19, 2019 85

More on Pipes . 85

Introduction to Concurrency . 87

25 Monday, July 22, 2019 89

Retrieving Values from Threads . 89

Locks, Mutexes, and Semaphores . 91

System and Unix Time . 93

Date and Time Functions . 93

26 Friday, July 26, 2019 94

Thread Safety . 94

Libraries . 94

27 Monday, July 29, 2019 96

Dynamically-loaded Libraries . 96

Introduction to Optimization . 96

Types of Optimizations . 97

Code Motion . 97

Loop Unrolling . 98

4

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Dead Code Elimination and Other . 98

Amdahl’s Law . 98

28 Wednesday, July 31, 2019 99

Memoization . 99

Parametrized Macros . 99

Virtual Memory . 100

Signals . 100

29 Friday, August 2, 2019 101

Back to Assembly . 101

AVR Stack Frame . 101

A The Make Utility 105

5

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

1 Tuesday, May 28, 2019

Logistics

1. All lectures are recorded and posted online.

2. No pop quizzes, no collaboration on projects.

3. Website sign-in: cmsc216/sprcoredump.

4. Office hours are immediately after class in IRB 2210.

5. Everybody will get an Arduino to be used later in the course.

6. This class isn’t curved.

Basic Unix Commands

Unix has lots of commands, but we want to first focus first on the ones that’ll let us write and execute C
programs.

• pwd → displays your current directory.

• ls → displays the files/directories in the current directory.

– ls -al → lists all of the files and directories, including hidden ones (Here, the a flag functions to
show hidden files, whereas the l flag functions to list all entries with detailed information, like last
date accessed).

– ls -F → identifies directories by listing them with a /.

• cd → change directory to the inputted parameter.

Introduction to C Programming

In CMSC131 and 132, we learned Java. Unlike Java, C is not object-oriented; it has no concept of classes,
objects, polymorphism, or inheritance. However, C can be used to implement some object-oriented concepts,
like polymorphism or encapsulation. Consider the following program:

Listing 1: A First Program

#inc lude <s t d i o . h>
i n t main () {

p r i n t f (”Fear the t u r t l e \n”) ;
r e turn 0 ;

5 }

How does this program work?

• The #include allows the compiler to check argument types. It can compile without declaration, though
the compiler will warn you.

• Like Java, C provides a definition of the main() function, where all C programs begin.

• We return from main() to end the program. For standard practice, we return 0 to signal that everything
worked out fine.

6

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Now, let’s say we want to run this program. How can we do this? C programs need to be compiled before
they can be executed. With the gcc compiler, a very simple compilation command is gcc file.c, from which
we can run the executable by just typing ./file.

Some more compilation options are summarized below (these are called flags):

• -g enables debugging by generating and maintaining necessary symbols (e.g. line numbers) upon
compilation.

• -Wall warns about common things that might be a problem.

• -o filename places an executable in the file name.

7

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

2 Wednesday, May 29, 2019

Last time, we analyzed a sample C program. It’s important to know that returning 0 in the main() function
is independent of the void that appears in the main’s header. That is, even if our header is int main(void)
instead of int main(), we will still return 0 at the end of the function. The void is just an explicit way of
telling our compiler that we shouldn’t be passing any parameters in.

More Unix Commands

Some more Unix:

• The cp command makes a copy of a file from a source to a destination. Some options are -a, which
allows us to preserve attributes, like timestamp modified. Also, -v explains what’s being done, while -r
copies recursively.

• The -rm command removes a file.

• The -mv command renames a file or moves a file/directory to another directory. For example...

– -mv f1 f2 renames file f1 to f2.

– -mv f1 d1 moves the file f1 to the directory d1.

– Finally, -mv d1 d2 moves the directory d1 to d2.

– The -cat command displays the contents of a file.

In Unix, we can create aliases, which are shortcut commands to use a longer command. Users can use the
alias name to run the longer command while typing less. Without any arguments, the alias command prints
a list of defined aliases. A new alias is defined by assigning a string with the command to a name. We can
add an alias by modifying the .aliases file in the home directory of Grace.

The general format for defining an alias is alias [alias name] 'command'. So adding the line
alias cookies 'ls' would define the command cookies to do the same thing as ls

Compilation Stages of a C Program

C programs need to be compiled before they can be executed. What happens when we compile a C program?
There are three compilation stages:

1. Preprocessor Stage: This stage is used to verify that program parts sees declarations that they need.
Also, statements starting with a # are called directives (for example,

2. Translation: In this stage, an object (.o) file is created. In addition, the compiler checks to make
sure that individual files are consistent with themselves.

3. Linkage: Finally, this stage brings together one or more object files. It makes sure that the caller/calee
to functions are consistent. The result is an executable file (by default, it’s named a.out),

8

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Variables in C

There are a lot of data types in C, some of which include char, short, int, long int, float, double, etc.
In Java, data types take up the same amount of space, independent of the system they’re run on. This is not
true in C; the minimum size of various data types are not necessarily the same size on grace. We do not need
to memorize the sizes of various data types; however, it is important to know that a char data type is an
exception to this rule: it always takes one byte.

Also unlike Java, there is no maximum size for a type; however, the following inequalities hold:

sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

Suffixes allow us to specify a number of a given type. For instance, 30000 is of type int, whereas 30000L
is of type long.

In C, there is no default boolean data types; anything with value 0 is considered false, whereas any other
value is considered true. However, we can use integers to represent booleans with true mapping to 1 and
false to 0.

Consider the following code example:

Listing 2: Conditional Example

#inc lude <s t d i o . h>
i n t main () {

i f (100) {
p r i n t f (”Fear the t u r t l e \n”) ;

5 }
r e turn 0 ;

}

The print statement in conditional executes successfully for reasons described above.

9

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

3 Friday, May 31, 2019

printf() and scanf()

When we’re using printf() to print something, we just print anything that’s in the quotations. For instance,
the line printf("Hello"); would print “Hello,” as we desire.

To print variables, we use conversion specifications, which begin with the %. These are just placeholders
representing a value to be filled in during printed. More specifically, the % specifies how the value is converted
from its internal binary form to characters. For instance, the conversion specification %d specifies that printf
is to convert an int value from binary to a string of decimal digits. In summary,

• %d for integers,

• %c for chars,

• %f for floats,

• %s for strings (null-terminated char array)

• %x for hexadecimal form

• %e for exponential form

• %u for unsigned integer.

For example, the following code segment will print i = 10.

Listing 3: Printing a Variable

#inc lude <s t d i o . h>
i n t main () {

i n t i = 10 ;
p r i n t f (” i = %d\n” , i) ;

5 r e turn 0 ;
}

scanf() is used for user input and it works similarly. The introduce the address operator, which is
denoted by a &. The address operator is a unitary operator which, as its name specifies, returns the memory
address of the variable on which it is acting on. When scanf() is called, it starts processing the information
in the inputted string, from left to right. For each conversion specification in the format string, scanf()
attempts to locate an item of the appropriate type in the input data, skipping any blank space if necessary.

Here’s an example:

Listing 4: Reading Variables

#inc lude <s t d i o . h>
i n t main () {

i n t i , j ;
f l o a t x , y ;

5 s can f (”%d%d%f%f , &i , &j , &x , &y”) ;
}

Now suppose that the user enters the line

10

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

1 -20 .3 -4.0e3.

The code above will convert its characters to the numbers they represent and assign the values 1,−20, 0.3,−4000.0
to the four variables.

Finally, one should keep in mind that char variables are actually just integers that map to an ASCII
character. So something like printf("%c", 65) works completely fine; it prints the character A.

There are two important things that one should check when using scanf() and printf():

1. Check that the conversion specifications match the number of input variables and that each conversion
is appropriate for the corresponding variable (as should also be done with printf(). Since the compiler
doesn’t necessarily have to check for mismatches, there won’t be any warning.

2. Another trap involves the & symbol, which should precede each variable in a scanf call. Forgetting
to put it can lead to unpredictable results. It is wrong to use the address-of operator in a printf()
statement.

A segmentation fault error occurs when the program attempts to access an area of memory that it
should not be accessing. Why is it called a segmentation fault? Because the content of memory at the time
of crash is stored into a core file.

We can get segmentation faults when using scanf() or printf() if we try to read into or print some
variable that we don’t have access to.

Control Statements

C has if/else, for, do-while, and switch statements, just like in Java. But due to the compiler flags in
our submit server, we won’t be allowed to declare variables in the for loop header.

There’s also break and continue, but they are bad practice and shouldn’t be used often.

Functions

C functions have the following format to create a function returnType functionName(parameter list) { ... }
Just like in Java, to call a function, we just write functionName(argument list);.

However, if the function appears after the main, then we need to do something called function pro-
totyping, which is just declaring the function before the main. This isn’t necessary if we implement the
function before the main, though. Function prototypes don’t actually need the name of the variable, but it’s
easier to read with them.

In C, variables are passed in by value. This is the same as Java. Some other things that are similar/dif-
ferent from Java include:

• C supports recursion.

• C does not support function overloading. In particular, we can point out that printf and scanf are
not overloaded functions; they refer to the same function!

11

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

4 Monday, June 3, 2019

The sizeof Operator

Before we talk about pointers, first we need to talk about the sizeof operator. The sizeof is a unitary
operator tells us how many bytes are associated with a particular entity. This is an important operator when
we’re doing dynamic memory allocation. For instance, suppose we don’t know how much memory to allocate
when we’re storing 10 integers. Then, we can do something like 10·sizeof

It is important to note that the sizeof operator does not evaluate the expression; for instance, doing
something like sizeof(x++) will not increment x. It just looks at the type of what’s inside.

Introduction to Pointers

A pointer is declared using the * symbol, right before the variable name. Consider the following code example:

Listing 5: Pointers Example

#inc lude <s t d i o . h>
i n t main () {

i n t y = 5 ;
i n t ∗p ;

5 }

Here, y is a standard integer variable, holding the value 5. By contrast, p is a pointer variable whose
value is garbage. But each of these don’t only have a value – they also have a memory address, which can
also be represented by an integer. For example, the memory address of y might be 2000; p doesn’t have a
memory address yet. A program refers to a block of memory using the address of the first byte in the block.

Now let’s say we add another line of code:

Listing 6: Pointers Example

#inc lude <s t d i o . h>
i n t main () {

i n t y = 5 ;
i n t ∗p ;

5 p = &y ;
}

Recall that the & symbol is the address-of operator. So at this point, p stores the memory address of
y, namely, 2000. Now, we can do something like printf("%d", *p), like we’re used to. Also, whenever we
change *p, we also change the value of y. In summary, a pointer is a variable that stores a memory
address.

Why do we need the type when we declare a pointer variable? We need to know the number of bytes to
grab. Since it’s an integer here, we know to grab four bytes.

Now what if we want to read in the pointer using scanf? Then we don’t need to use the & operator on
the pointer – the pointer already refers to a memory address! To make this more clear, consider the following
code:

12

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 7: Pointers Example

#inc lude <s t d i o . h>
i n t main () {

i n t age , va lu e s r ead ;
i n t ∗ age pt r = &age ;

5 p r i n t f (”Enter your age and s a l a r y ”) ;
s can f (”%d %f ” , age ptr , &sa l a r y) ;

}

When we’re taking in salary, we need to use the & operator since we want to retrieve the address. By
contrast, we don’t need the & operator for age_ptr since it already stores a memory address.

Pointers as Parameters

Recall that parameters in C are passed by value. To demonstrate this, consider the following code example:

Listing 8: Variables Passed by Value

#inc lude <s t d i o . h>
i n t main () {

i n t y = 7 ;
f (y) ;

5 }

void f (i n t x) {
x = 200 ;

}

When the code above is executed, the value of y doesn’t change – we’re passing a copy of y into the
function. That is, the value of y is 7 even after Line 4 executes.

Now consider the following function wrong_swap below:

Listing 9: Variables Passed by Value

void wrong swap (i n t a , i n t b) {
i n t temp = a ;
a = b ;
b = temp ;

5 }

i n t main () {
i n t x = 2 , y = 3 ;
wrong swap (x , y) ;

10 }

When the function terminates, the variables a and b are destroyed. The variables x and y are not swapped.
The reason why is, again, because parameters are passed by value in C. So how can we swap variables, if
we’re only returning one value? This can be done with pointers, where the same idea of passing-by-value
holds. Here’s the correct way to swap —

13

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 10: Variables Passed by Value

void swap (i n t ∗a , i n t ∗b) {
i n t temp = ∗a ;
∗a = ∗b ;
∗b = temp ;

5 }

i n t main () {
i n t x = 2 , y = 3 ;
i n t p = &x ;

10 i n t q = &y ;
swap (p , q) ;

}

This is the same idea, but why does it work? Because we can dereference the pointer. We’re note actually
changing x and y – we’re changing their memory addresses. So, this works.

14

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

5 Tuesday, June 4, 2019

The comma operator in C is used to separate expressions. It’s a binary operator that evaluates its first
operand and discards the result. It then evaluates the second operand and returns this value. For instance,
y = (3, 4); is a valid expression, which assigns the value 4 to y.

Identifier Scopes

There are two main types of scopes in C:

• The block scope contains variables declared inside a block, and it is only visible within the block.
They do not exist outside of the block.

• The file scope contains identifiers declared outside of any block; it is visible everywhere in the file
after the declaration.

In the heap segment, text and data are constant from start to the end of the program. Execution follows
the text segment of the memory. The data section contains global and static variables. Finally, the stack
stores local variables and function parameters. There’s some extra space in the heap which is used for
dynamic memory allocation. The stack and heap grow in opposite directions, which is convenient to prevent
overlapping. The heap goes up, and the stack goes down.

There are two types of storage types:

• Automatic storage occurs when the variable is transient. That is, after some time, it is no longer
returned (e.g. when a function returns).

• Static storage occurs when the variable exists throughout the entire life of the program. Global
variables have this kind of storage, and initialization to static variables only occur once.

You can make a block-scoped variable static, which would be important when you’re counting the number of
times a function executes.

A linkage is a property of an identifier that determines if multiple declarations of that identifier refer to
the same object.

There are two main types of linkage that we should know about:

1. Static linkage is performed in the final step of compilation; it is fast, and it can be referenced from
anywhere within the same file.

2. Dynamic linkage is performed during runtime at the cost of running slower.

15

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

6 Wednesday, June 5, 2019

Invalid Uses of Pointers

Consider the following code segment:

Listing 11: Incorrect Pointer Usage

#inc lude <s t d i o . h>
i n t main () {

i n t ∗p ;
∗p = 200 ; /* This is wrong! */

5 p r i n t f (”The value i s %d\n” , ∗p) ;
r e turn 0 ;

}

This is wrong, and it might generate a segmentation fault error. Why? We need p to be associated with
an area of memory that is valid.

A quick fix is to initialize a variable, and assign p to the memory address of that variable. For example,
the code segment below is correct, and it will print 200.

Listing 12: Correct Pointer Usage

#inc lude <s t d i o . h>
i n t main () {

i n t ∗p ;
i n t x ;

5 p = &x ; /* This is correct! */
∗p = 200 ;
p r i n t f (”The value i s %d\n” , ∗p) ;
r e turn 0 ;

}

The first code segment doesn’t work correctly because the pointer is not initialized. Pretty much, we’ve
created a pointer to ”anywhere you want,” which can be the address of some other variable, or some
nonexistent memory.

When you have a program in C, there are four areas of memory: the stack, heap, data, and code. If
some amount of memory is allocated for a function process, that memory becomes deallocated after the
function is finished. So, we don’t want to be messing with memory that no longer exists. For instance, the
following code example is bad:

Listing 13: Incorrect Pointer Usage

#inc lude <s t d i o . h>
i n t ∗ proce s s () {

i n t x = 10 ;
i n t ∗p = &x ;

5 r e turn p ; /* This is bad − we’re returning a
pointer to some area that no longer exists! */

}

Even if the program seems to work, the local variable disappears – the space for it is gone, and we’re not
supposed to be messing with the memory that it used to be in.

Remark 6.1. We can print the memory address of a pointer using printf with the format specifier %p.

16

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Null Pointers

The null pointer is a special pointer that points to the address 0, where nothing is allowed to be accessed.
It’s analogous to Java’s null, except we use NULL rather than null.

You can assign null to any kind of pointer variable, and we also need to check if they’re null prior to
derefering them; using a simple if (p != null) conditional works.

Also, null’s numeric value is equal to zero, so a conditional statement with them will not execute.

Introduction to Arrays

Arrays are a bit different in C when compared to arrays in Java. In C, an array is just a chunk of bytes, one
after another. We can declare an array of integers doing something like int a[3], and indexing works the
same as Java (starting at zero). Note that when we make the declaration int a[3], the default elements are
not zero (like in Java); instead, they are all garbage values. Also, you can’t use a variable to declare the size
of an array, but you can use it for indexing.

Note that an array is not an object, meaning that things like a.length don’t exist. We need to keep
track of the length ourselves. This can often be done with constants, which start with the const keyword.
For now, we assume arrays are not dynamic in terms of their space.

If the array has three elements, then the size of the array is actually 12 bytes (four bytes per integer). We
can use the operator sizeof, and something like sizeof(a) will return 12.

Some examples of array declarations are as follows:

• int a[3] = {10, 20, 30}; will declare an array a of length three, with the three elements listed.

• char b[] = {'A', 'B', 'C'} will declare an array with size 3 with the provided elements. Note that
we don’t need to specify the length when we’re initializing by list.

• float c[4] = {1.5} will declare an array of size 4 with first element equal to 1.5. The other elements
will equal 0. This is really convenient because we can do something like int a[3] = {0}; to initialize
our array of length three to have all zero elements.

Arrays as Parameters

Recall that everything in C is passed by value.

17

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

7 Monday, June 10, 2019

The pushd and popd commands in Unix can be used to work with a directory stack. The command pushd
pushes a directory on top of the directory stack, and the popd command returns to the path at the top of the
stack.

The history command prints your most recent commands.

Pointing to a Local Variable

When working with pointers, you shouldn’t return the address of a local variable. Consider the following
code segment:

Listing 14: Incorrect Pointer Usage

i n t ∗ get va lue−wrong () {
i n t x = 20 ;
re turn &x ;

}
5

i n t add value (i n t y) {
i n t a = 99 ;
re turn a + y ;

}
10

i n t main (void) {
i n t ∗a , b ;

a = get va lue wrong () ;
15 p r i n t f (” F i r s t r e s u l t %d\n” , ∗a) ;

b = add value (7) ;
p r i n t f (”Second value %d\n” , b) ;

20 p r i n t f (” F i r s t r e s u l t (changed ?) %d\n” , ∗a) ;
}

The first print statement on Line 15 will work fine; it’ll print out 20 as we’d want it to. This first part
might seem counterintuitive because we usually think that the memory gets “thrown away” after the function
finishes execution. In reality, this isn’t what happens – the stack pointer just moves down, below the local
variable. This tells our computer that the previously occupied area of memory is now available for reuse. In
our case, the space occupied by the integer x will now be available for reuse.

But then, after we call the add_value function, the first result will have changed. Since we’re declaring
another local variable of the same type (integer), the same space that was previously being used will be filled
for the second function call. The space that was previously holding the number 20 will now hold 99. Once
again, after the function finishes execution, the stack pointer moves below the 99 again (but it does not
disappear!).

And so, the print statement on Line 18 prints 106, and the print statement on Line 20 will print out 99.

String Comparison

To compare strings, we use the strcmp function, which is built in string.h library. The function header is as
follows:

18

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

int strcmp(const char *s1, const char *s2);

Pretty much, it takes in two strings s1 and s2, and it returns a negative number if s1 is (lexicographically)
less than s2, the integer 0 if they’re (lexicographically) equal, and a positive number otherwise. Note that
the const in the parameter list of strcmp indicates that the data of s1 and s2 can’t be changed (this makes
sense because changing the strings isn’t necessary for comparison).

Remark 7.1. This functionality is pretty much the same as compareTo in Java

Here’s one way to implement the strcmp function. Nelson says we should know this implementation for
the exam.

Listing 15: String Comparison Implementation

i n t strcmp (const char ∗ s1 , const char ∗ s2) {
i n t i ;
f o r (i = 0 ; s1 [i] && s2 [i] ; i++) {

i f (s1 [i] != s2 [i]) {
5 break ; /* Gets us out of the for loop */

}
}
r e turn s1 [i] − s2 [i] ;

}

• The for loop iterates until we reach the end of either string (the Boolean expression s1[i] && s2[i] is
false only if we hit a null character in either string) or if we hit two characters that are different (this is
what the conditional inside the loop does).

• Once we’re at the differing character, we can just return their difference.

Note that the above implementation uses the fact that the null character has numeric value 0. This allows
the code above to take care of the cases in which one string is shorter than the other.

Copying Strings

To copy a string, we use the strcpy() funcion, which is built into the string.h library. The header is as
follows:

char* strcpy(char *dest, const char *src).

The function copies the string in src to the string in dest. After successful completion, the function
returns a pointer to the destination string.

The danger with strcpy() is that it doesn’t specify the size of the destination array, which can lead to a
buffer overflow error. This type of error occurs when you put more data into a fixed-length buffer. The
extra information has to go somewhere, and it can overflow into adjacent memory space, which corrupts
other data.

Here’s an implementation of the function strcpy() function:

Listing 16: String Copy Implementation

i n t s t r cpy (const ∗dest , const char ∗ s r c) {
i n t i = 0 ;

19

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

whi le (s r c [i]) {
5 dest [i] = s r c [i] ;

i++;
}
dest [i] = ’ \0 ’ ;

}

• We are copying the source into the destination.

• The while loop executes until we hit the null character in the source.

• We copy the first, second, third.... character into the destination.

• When the while loop executes, i is equal to the position where source has a null character, so we need
to add that into the destination string.

Again, take note of the parameters. The string dest isn’t constant because we’re modifying it.

String Literals

The declarations char name[] = "Mary" and char *name = "Mary" are not the same. The first declaration is
an array, which is what one should use if they’re planning to change the value of the name from Mary to
something else. On the other hand, the second declaration declares name as a pointer to a string literal. This
should instead be declared as const char* name = "Mary".

Void Pointers

A void pointer or generic pointer (they are the same) is a special pointer that’s used to hold memory
addresses of data when you don’t know its type. They are used by functions (like C’s built-in quicksort
function) when you don’t know the type of data you’re dealing with. Void points are declared by simply
replacing the type of a normal pointer with the void keyword. So, void *ptr would declare ptr to be a void
pointer.

A void pointer can point to any type. So, you would be able to do ptr = &someInt or ptr = &someChar,
etc. But integers, floats, and characters occupy different amount of space. So how does this work? The key is
to note that pointer variables store the address of the first byte.

Note that a void pointer cannot be dereference directly. Dereferencing requires casting because
the pointer needs to know how many bytes to grab. It’s up to the user to make sure that the void pointer is
casted right. So if you read in a float value into ptr, the statement printf("V1: %f\n", * (float *) v_ptr)
would print the entity at the address stored in v_ptr. Note how this print statement has two asterick symbols:
one is used in the cast, whereas the other is used for dereferencing.

It’s also a good idea to use type casting when you’re doing pointer arithmetic with void pointers. For
example, consider the following code segment:

Listing 17: Bad Void Pointer Arithmetic

i n t one d [5] = {12 , 19 , 25 , 34 , 46} , i ;
void ∗vp = one d ;

p r i n t f (”%d” , one d + 1) ; // bad

20

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

You might want to print the second element of the array with the above code. But this won’t work.
Adding a number to a memory address works by shifting logical units. However, these logical units are
dependent on the type being worked with. Changing the fourth line to printf("%d", (int *) one_d + 1)
would fix this.

The value of a void pointer can be assigned to integer/float/other pointer variables without a cast. For
example, if we have a float pointer f_ptr and a void pointer v_ptr, the statement f_ptr = v_ptr works
perfectly fine because it’s just specifying how many bytes to grab.

Pointers to Pointers

You can have pointers to pointers (and even pointers to those pointers). The number of astericks indicates
the degree-of-separation from the original variable. For instance, int **p2 is a pointer to a pointer. Once
p2 has properly been initialized, we can do double dereferencing by typing ** p_{2} to get the value of the
original variable.

When do we use pointers to pointers? Consider a function we’re writing that needs to modify a pointer.
This would need to be implemented by taking in a pointer to a pointer;

21

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

8 Wednesday, June 12, 2019

The grep command in Unix looks for a pattern in a file. The general syntax is grep [pattern] [file_name].
So for example, if you wanted to find all instances of “cheese” in “homework.c,” you could execute
grep cheese homework.c to get this result (note how there aren’t any quotes).

Command Line Parameters

So far, our main function’s header has always been int main(void), which indicates that the main method
doesn’t take in any parameters. However, it is possible to accept command line parameters into the
main by instead using the header int main(int argc, char **argv). This second form allows us to access
command line arguments as well as the number of arguments specified (arguments will be separated by spaces).

In summary, the two arguments that the main function accepts in this second formulation are

• int argc, which represents the number of arguments passed into the program when it’s run. This
number needs to be at least 1.

• char **argv, which is a pointer to a character pointer. We can alternatively replace char **argv with
char *argv[], which is an array of character pointers.

For instance, consider the following program:

Listing 18: Command Line Parameters

i n t main (i n t argc , char ∗argv []) {
/* Processing */
r e turn 0 ;

}

We can pass in parameters through command line by typing, for example,

./a.out hello my name is ekesh.

The output is presented below:

argv[0]: ./a.out
argv[1]: hello
argv[2]: my
argv[3]: name
argv[4]: is
argv[5]: ekesh

Note how even ./a.out counts as one of the strings processed. If we don’t want this to happen, we can
just treat the 0th index in the array as a sentinel. Also, keep note that !argv[i]! is a string. If we want to use
a passed in value in, say, a loop, then we need to use the atoi() function, which converts a string argument
into an integer.

22

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Two-Dimensional Arrays

When you’re passing in a two-dimensional array into a function, the first array dimension (i.e. the number of
rows) does not have to be specified. The second (and any subsequent parameters, if we’re working with more
than two dimensions) need to be specified.

So, for example, a function with header void print(int arr[][n], int m) would be fine, whereas
something like void print(int arr[][], int m) wouldn’t work.

Obviously, this would only work if the second dimension is fixed and isn’t user-specified; this is a clear
drawback.

Two-Dimensional Character Arrays

Consider a two-dimensional array of characters declared as follows: char friends[100][81].

Typically, we can view a two-dimensional character array as a one-dimensional array of strings. For
example, char friends[100][81] would store 100 strings, each of which have a maximum length of 80. We
can then access the ith friend stored in the array by standard one-dimensional array indexing, like friends[0].
However, it’s up to the programmer to verify that the null character is present at the end of each row in the
array.

Since two-dimensional arrays are stored in row-major order, executing strcpy(a[0], "12345") to copy a
five-character-long string into an array with column-length less than 5 will still work; however, the ”trailing
characters” will go into the next row. There is no compilation error here, though.

The typedef Keyword

The typedef keyword is used in C to create an alias for another data type. The general syntax for declaring
a typedef is typedef [data_type] [new_name]; By convention, the new_name of a data type usually starts
with a capital letter.

The main reasons why we use typedefs are to improve code readability and maintainability. As per
convention, it’s good to start new_name with a capital letter so that we can distinguish it from other types.

It is important to note that the typedef and #define preprocessor are not the same: the #define
preprocessor works by by blindly substituting what we’re defining, whereas typedef actually defines a new
type. In fact, a typedef is not a preprocessor directive; typedef is a compiler token, and the preprocessor
doesn’t care about it at all.

An Exception to Typedef

An exception to the standard typedef [data_type] [new_name] syntax for defining a typedef is when we’re
dealing with arrays. Pretty much, if we’re typedef’ing something to become an array, from what we’ve
learned, we would expect to write something like typedef int[30] MyArray. However, this is wrong. The
correct way to do this would be to write typedef int MyArray[30]; the size of the array comes after the
new_name identifier. This is an exception, and MyArray will now represent an array of 30 integer elements.

This exception also applies to multi-dimensional arrays.

23

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Structures

Defined in terms of Java, a structure is a class without methods and without private fields.

More formally, a structure is a user-defined data type which allows one to group items of possibly
differing types into one single type.

The basic syntax for declaring a structure type is struct [struct_tag] { [member_list] }; (note how
there is a semicolon at the end). Conventionally, structures are typically declared at the top of a program,
before the main. Conventionally, structure tags begin with a lowercase letter.

Suppose we are writing a program that involves computer graphics. We might want to have a structure to
represent a pixel. This structure should abstract the basic details about a pixel, like its x and y-coordinates
and its color. This can be done with the following code:

Listing 19: Structure Example

s t r u c t p i x e l {
i n t x , y ;
char c o l o r ;

} ;

Here, we’ve declared a structure with the tag “pixel,” which contains an integer x, an integer y, and a
character color.

Fields in structures cannot be initialized (so, it would be invalid to set x and y to 0 by default in the
above example). Why can’t we initialize fields in structs? Basically, when the structure is declared, there
isn’t any memory allocated for it (there’s no reason to allocate memory yet – we don’t even know if the
program will ever use the structure). Memory is allocated only when variables are created, so there isn’t any
space to actually declare a variable yet.

Once we’ve declared the pixel struct, we can declare a variable p1 of its type by typing struct pixel p1;.
The members of p1 can be accessed by using the period: p1.x = 50 would set the x variable associated with
p1 equal to 50.

C also supports using an initialization list to initialize a structure. For example, we could write
p1 = {1, 2, 'r'} in order to declare x, y, and color to 1, 2, and ’r’ respectively. The order in which the
variables are provided is the same order in which these variables are assigned values. If we don’t assign all of
the values, their default values will be assigned.

There aren’t any conversion specifiers that allow us to directly print out all of the variables associated
with a structure (side-note: this is called a reflection). If we want to do this, we need a conversion specifier
for every variable in the structure.

A couple of other things to remember:

1. Structures can be assigned to each other. For instance, a = b will compile, and it will assign all of the
field values of b to the corresponding fields in a. This performs a shallow copy.

2. Structures cannot be compared. The line a == b will not even compile. Even structures with the same
fields in the same order aren’t compatible.

24

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Combining Typedefs with Structs

Following the typedef [data_type] [new_name] syntax for declaring a new data type, we can typedef a
structure in order to get rid of the struct that’s usually necessary when declaring a structure.

For example, consider the pixel example from above. It was necessary to write struct pixel p1; to
declare a pixel. However, if we modify the code to what follows, we can instead write Pixel p1;.

Listing 20: Typedef’ing a Structure

typede f s t r u c t p i x e l {
i n t x , y ;
char c o l o r ;

} Pixe l ;

We usually typedef a structure for brevity and readability.

Pointers to Structures

Since everything is pass-by-value in C, when we pass in a struct as a parameter to a function, we’ll have a
copy of the structure with every value equal to the original value’s corresponding fields. Like we’d expect,
this would mean that changing the structure inside the function doesn’t change the original structure outside
of the function (i.e. a shallow copy is performed). Like always, if we want to modify the actual structure, we
need a pointer to the structure.

When we’re dealing with pointers to structures, there’s an arrow operator, which is used to dereference
a pointer to a structure. Going back to our pixel example, for instance, if we have the pointer p1 defined as
Pixel * p1, we can set the structure’s associated value of x equal to 50 by writing p1->x = 50.

Why do we need the arrow operator? There’s nothing wrong with writing (*p1).x = 50 – it does the
same thing. But, something like *p1.x = 50 does not work for precedence reasons. Hence, having the
arrow operator improves readability instead of having a lot of parentheses and astericks.

25

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

9 Monday, June 17, 2019

Exit Codes

An exit code is a value that is returned to the shell, which is responsible for reading and executing your
code. By convention, when everything goes well, we return 0 (as we have been doing in all of our programs).

The header file stdlib.h contains a lot of preprocessor directives, which represent exit codes. For example,
EXIT_SUCCESS and EXIT_FAILURE can be used when the program successfully executes or unsuccessfully
executes (these would be used instead of having a line that says return 0). It turns out that EXIT_SUCCESS
is actually a preprocessor directive for 0.

In order to use an exit code, we use the built-in void exit(int status) function. So, for example, we
could replace return 0 in the main with exit(EXIT_SUCCESS), and it would mean the same thing. On the
other hand, if exit() is used outside of the main, the program will terminate once it reaches that statement,
while a return statement would bring us back to the main.

How do exit codes help us? After executing a program, we can type echo $? to check the previous
command’s exit code. This can be used in shell programming, where we are telling the actual shell what to
do.

In addition to exit codes and return values, there are a few important functions that are used to produce
error messages:

1. The function void perror(const char *str) is used to describe the last error encountered during a
library function or system call. If a string is provided, that string will be printed prior to the default
error description. The default description is generated by a global variable called errno, which comes
from the errno.h header file (i.e. it is an integer-to-string mapping).

2. The char *strerror(int errnum) function returns a pointer to the textual representation of the current
errno value.

Note that neither of these functions kill the program.

Text and Binary Streams

In C, most input and output is provided in the sequence of bytes, which is more commonly known as a
stream. There are two types of streams: text streams and binary streams.

• Text streams consist of lines of text, each of which are terminated by the \n character. They can be
opened in text editors.

• Binary streams consist of raw data; they require a special editor to open.

What are the advantages of one type of stream over another? When we’re using text streams, we can
easily debug the program (it’s human-readable and doesn’t require additional tools, while binary files do).
On the other hand, text streams might not be a great idea for when we’re modifying files a lot: changing
even a single character requires re-reading the entire file. If we were using a binary stream, however, we could
(in most cases) just change the relevant bytes.

26

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Standard Input/Output

Now, we’ll discuss how to read and write to files.

For files you want to read or write, we need a file pointer, declared like FILE *fp. Realistically, it isn’t
really important what the type FILE actually is – we can just think of it as some abstract data structure
which permits us to perform file I/O operations.

Performing file I/O operations has three key steps:

1. Open the file

2. Perform any processing

3. Close the file

To open the file, we use the fopen command, whose declaration is as follows: FILE *fopen(const char
*filename, const char *mode) . Note that the function returns a file pointer, which we’ll set our pointer
equal to. If there’s any error in opening the file, fopen will return NULL.

The filename parameter is a string, which holds the name of the file on the disk (including a path if
necessary), and the mode is another string, which represents how we want to open the file. In this class, the
file will be opened with mode equal to “r” (for reading) or “w” (for writing). Another mode is “a”, which
lets us append to a file, without losing the rest of its contents.

Once we’ve opened the file, we’re ready for processing. If we’re reading the file, we can use the fgets()
function, whose declaration is specified as follows: char *fgets(char *str, int n, FILE *stream). The
parameter str in fgets stores the line read by the function, and it stops reading until either n characters
have been read, or a \n character is encountered. Note that this \n character is also stored as a part of the
out parameter. If there are any errors, the function returns NULL.

If we’re writing the file, we can use the fputs() function, whose declaration is the following: int
fputs(const char *str, FILE *stream). It places the string str into the file stream. The function returns
a non-negative integer upon success.

Finally, we need to close the file. This requires use of the fclose() function, whose declaration is as
follows: int fclose(FILE *stream). The function returns 0 upon success, and it signals that we are done
processing the file.

The three key steps of file I/O operations are captured with the following code segment:

Listing 21: Processing a File

#inc lude <s t d l i b . h>

#de f i n e MAXLEN 80

5 i n t main () {
FILE ∗ input ; /* does not need to be named input */
char l i n e [MAX LEN + 1] , f i l ename [MAX LEN + 1] ;

p r i n t f (” Input f i l e name (e . g . , data . txt) : ”) ;
10 s can f (”%s” , f i l ename) ;

i f ((input = fopen (f i l ename , ” r ”)) == NULL) {
pe r ro r (” e r r o r opening f i l e ”) ;
e x i t (EXIT FAILURE) ;

} e l s e {
15 whi le (f g e t s (l i n e , MAX LEN + 1 , input) != NULL) {

p r i n t f (”%s ” , l i n e) ;
}
f c l o s e (input) ;
e x i t (EXIT SUCCESS) ;

20 }
}

27

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

On Lines 9 and 10, the program prompts a file name, which is subsequently stored. Line 11 attempts to
open the file; upon success, each line is processed and printed. If the file cannot be opened, an error message
is printed, and an exit code is returned. Line 18 closes the input stream, and Line 19 returns a successful exit
code. Note that when we’re printing on Line 16, there’s no \n necessary. When we perform fgets(), we’ve
already stored the new-line character, so adding an additional \n will put two spaces between lines.

If we want formatted input and output, we can similarly use fprintf() and fscanf().

Nelson says that, at this point, we should be able to write a C program that copies one file to another
using command line arguments.

Every program has three defined streams: standard input, standard output, and standard error.
We can use the the keyword stdin in place of a file pointer to read from the user’s keyboard.

Like standard input, standard error is also printed to the screen. It is denoted by the built-in file pointer
sterr, and it is helpful since it allows us to sort out our print statements, depending on whether a program
executed successfully or not.

So, standard input and standard error are different files; however, they both map to the screen. To direct
standard error, we can use > & in Unix.

The end of a file is denoted by an invisible end of file (EOF) character. There’s a function with the
header int feof(FILE *fstream) that checks whether the EOF file has been reached, after the file has been
attempted to been open. We can manually enter the end-of-file character with our keyboard by entering CTRL
+ D. Also, EOF is a preprocessor directive, so we can use that in our conditionals.

It is important to note that we need to first attempt to read the file before using feof().

28

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

10 Wednesday, June 19, 2019

In addition, it’s important to remember that fgets() returns NULL after we’ve reached the end of file (i.e. we
shouldn’t be using EOF with it. On the other hand, it’s fine to use EOF with scanf statements.

The scanf() Family

There are three functions in the scanf() family: scanf(), fscanf(), and sscanf().

First, fscanf() has the header int fscanf (FILE * stream, const char * format, [address of variables]).
Pretty much, we take in a file pointer along with some format, and we read it into some variables. When
processing files, we want to keep reading until we hit EOF.

The loop conditional while(fscanf(input_stream, "%s%d", students_name, &id) != EOF) allows us to
process the lines in a file one-by-one until we hit the end of the file. Note, however, that there’s an assumption
that the lines of the file are formatted in the same way. It’s a good idea to use fscanf() when the lines are
inputted in a uniform manner.

The sscanf() function has the header int sscanf (const char * s, const char * format, ...), which
returns the number of variables successfully read from the input string s. This can be helpful when we’ve
already stored the string (e.g. a line) to be processed.

Sometimes, it’s really helpful to combine the use of fgets() and sscanf(). The former allows us to store
the entire line, and the latter allows us to make sure that everything is formatted properly (by using its
return value).

The printf() Family

• printf(), we’ve already seen.

• fprintf() has the header int fprintf (FILE * stream, const char * format, ...);. It takes a
stream, and it’s analogous to fscanf().

• int sprintf(char *str, const char *format, ...) prints into the string variable str; it’s the
analogue of sscanf().

Dynamic Memory Allocation

Dynamic memory allocation allows us to allocate storage space while the program is running. Once we’re
done using this allocated memory, it’s important to call the free() function to make that space available
again. There are a few other important functions that help us with dynamic memory allocation, the first of
which is malloc() (which is short for memory allocation).

The malloc function has the header void* malloc(size_t size). The function takes in a size parameter,
specifying how much space to allocate. It returns a void pointer pointing to where that space begins. The
function returns NULL if the memory allocation fails.

As an example, consider the following code segment:

29

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 22: Malloc Example 1

#inc lude <s t d l i b . h> /* For malloc, EXIT_FAILURE,
EXIT_SUCCESS */

i n t main () {
i n t ∗ ip , i , a r r ay l eng th = 3 ;

5

/* Allocating space for an integer */
ip = mal loc (s i z e o f (i n t)) ; /* notice casting is not

necessary */
i f (ip == NULL) {

e x i t (EXIT FAILURE) ;
10 }

∗ ip = 104 ;
p r i n t f (”Value as s i gned i s %d\n” , ∗ ip) ;
f r e e (ip) ; /* deallocating memory */

}

We start with an integer pointer ip, and we make it point to some space of memory using malloc. Note
how we’ve specified that this memory has enough space to store one integer. Thus, we can dereference the
pointer and assign it to an integer, and everything works fine. Further, observe that there is no need to cast
the void pointer to an integer pointer.

Once we’ve called free() on a dynamically allocated memory address, it’s important that we don’t access
that memory location again. When a memory location has been freed, any pointers that used to point to it
become dangling pointers, which shouldn’t be used. Doing so could lead to a segmentation fault, so it can
be helpful to set the previously used pointer equal to null.

So, what happens internally when we call free()? Essentially, the heap manager marks the bytes in the
memory specified as available for use. We don’t actually care about what the free() returns – to us, it just
means that the memory is free again. When we don’t free the memory we’ve used, it’s called a memory
leak, which is bad.

We can also allocate memory for an entire array using the following code segment:

Listing 23: Malloc Example 2

i n t main () {
/* Allocating space for array */
i n t ∗ ip = mal loc (s i z e o f (i n t) ∗ a r r ay l eng th) ;
i n t a r r ay l eng th = 3 ;

5 i f (ip == NULL) {
e x i t (EXIT FAILURE) ;

}
f o r (i = 0 ; i < a r r ay l eng th ; i++){

ip [i] = i ∗ 3 ;
10 }

f o r (i = 0 ; i < a r r ay l eng th ; i++){
p r i n t f (”%d ” , ip [i]) ; /* notice using array

indexing */
}
p r i n t f (”\n”) ;

15 f r e e (ip) ; /* deallocating memory */
}

There aren’t really any new concepts in this code segment. It should be carefully noted, however, that we
check if the pointer returned from malloc and calloc is null after each call. The output of the program is 0 3

30

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

6, and the memory allocated for the array is freed after this is printed. It’s important to call free() on a
pointer that points to the start of the array that we’ve allocated, otherwise freeing won’t work.

When we assign malloc() to a pointer, the value at the assigned memory location is garbage.

There’s an alternative way to allocate memory: with the calloc() function. Unlike the malloc() function,
calloc() takes in two parameters: its header is void *calloc(size_t count, size_t obj_size), and it
allocates count objects of size obj_size each. The function returns a pointer to the beginning of the memory
address created. Also unlike malloc, the calloc function initializes all spaces to zero, which can save time
depending on what we’re doing.

Having introduced calloc, there are a lot of shortcuts we can take. For example, consider the statement
int **q = calloc(4, sizeof(int *)), which allocates space for an array of four integer pointers. Also, since
calloc automatically initializes its spaces to zero, all of these pointers are automatically set to null for us.

31

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

11 Friday, June 21, 2019

Recap of Dynamic Memory Allocation

Today, we will continue discussing dynamically allocated memory (i.e. memory that isn’t allocated until the
program starts running). What’s another reason we use it? Sometimes, the size of a data structure isn’t
known until runtime (for example, suppose we want to initialize an array of size N , where N is a positive
integer provided by the user). Also, Linked Lists will use dynamic memory allocation everytime we make a
new node.

To recap, there are two memory management are library functions that are used to allocate memory
dynamically: malloc() and calloc().

1. The void *malloc(size_t amount); function allocates amount bytes (if available) from the heap and
returns a void pointer to the beginning of it. Note that there cannot be any initialization of this space.

2. The void *calloc(size_t count, size_t obj_size); function allocates count objects of size obj_size
each (if memory is available), and it returns a void pointer to the beginning of it. By default, all the
space is initialized to zero.

Both malloc() and calloc() return NULL if the allocation fails.

A third memory management function is void free(void * ptr) – after this function is called, the
memory pointed to by ptr is now available for reuse by the memory allocator. Something to take note of is
that free() has to be the same pointer that was returned from malloc() or calloc() – we can’t call free()
in the middle of the area that we allocated. Also, after the pointer is freed, the pointer becomes a dangling
pointer, so we shouldn’t dereference it.

Good programming practice should exhibit a one-to-one mapping between the number of calls to malloc()
and calloc() and the number of calls to free(). It’s also good to know that calling free() on null is
harmless – you don’t need any null checks for calling free(). Doing free(NULL) is completely harmless. Also,
as one would expect, we can’t free pointers whose data is constant (i.e. we can’t free a pointer declared as
const char *p).

We should only call free() on a pointer once. Why? When we call malloc or calloc, we’re telling our
computer that we want to reserve some memory just for that pointer. When we subsequently call free, we’re
telling the computer that we don’t need that space anymore; however, the pointer still points to that memory
address. If we invoke free() a second time, we’re not freeing the previous data, but possibly some new data
that resides at that memory address.

Dynamically Allocated Structures

Consider the following lecture example:

Listing 24: Dynamically Allocated Structure

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h> /* For malloc, EXIT_FAILURE,

EXIT_SUCCESS */

5 /* Notice tag and typedef identifier can be the same */
typede f s t r u c t Student {

char ∗name ;
i n t age ;

} Student ;

32

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

10

i n t main () {
Student ∗ student ;
i n t l ength ;

15 /* Allocating space for a Student structure */
student = mal loc (s i z e o f (Student)) ;
i f (s tudent == NULL) { e x i t (EXIT FAILURE) ; }

/* Allocating space for name */
20 p r i n t f (”Enter number o f cha ra c t e r s in your name : ”) ;

s can f (”%d” , &length) ;
student−>name = malloc (l ength + 1) ;

/* Reading name and age */
25 p r i n t f (”Enter your name : ”) ;

s can f (”%s” , student−>name) ;
p r i n t f (”Enter your age : ”) ;
s can f (”%d” , &student−>age) ;

30 /* Feedback */
p r i n t f (”Your name i s %s and your age i s %d\n” ,

student−>name , student−>age) ;

/* Freeing memory */
/* We must free name first */

35 f r e e (student−>name) ;
f r e e (student) ;

r e turn EXIT SUCCESS ;
40 }

On Line 16, we dynamically allocate space for student to become a Student type. Immediately after, we
check if this allocation was successful (i.e. check if student == NULL holds), and we continue if it was. Next,
we allocate space for name, depending on how many characters the user requires (which is provided through
stdin). Finally, we store the student’s age (also from stdin), we print the student’s information, and we free
the space we allocated.

Some key things to note:

• Why did we allocate space for student and name but not for age? Because age isn’t a pointer, so we
already get space for age after we dynamically allocate space for student.

• Why do we free name before student? If we freed student first, then student becomes a dangling
pointer. So, we shouldn’t be accessing student->name afterwards (accessing the name depends on the
existence of a student, but the student’s existence doesn’t depend on its name).

Pointer Aliases

We can have two pointers point to the same dynamically allocated memory area. For instance, consider the
following code segment:

Listing 25: Pointer Aliases and Dynamic Memory Allocation

i n t ∗p , ∗q ; /* Declare two integer pointers */
p = malloc (s i z e o f (i n t)) ; /* Dynamically allocate

memory */
i f (p != NULL) { /* Make sure allocation succeeded. */

33

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

∗p = 99 ; /* Dereference p; set its entity to 99. */
5 q = p ; /* q points to the same memory address as p

*/
f r e e (p) /* BOTH p and q are dangling pointers now

*/
∗q = 42 ; /* This is WRONG. */

}

In summary, if we free one pointer pointing to a memory address, every pointer pointing to that same
memory address becomes a dangling pointer.

Common Errors

The common errors of dynamically allocating memory comes are summarized below:

1. Dereferencing pointers to freed space. We’ve already discussed this.

2. Forgetting to check if malloc or calloc returned null (i.e. the dynamic memory allocation was unsuccess-
ful).

3. Forgetting to initialize the memory malloc() returns (calloc() automatically does this for us).

4. Attempting to free non-heap memory (i.e. we should only be calling free() on dynamically allocated
memory).

5. Memory leaks: forgetting to call free() on dynamically allocated memory.

6. Calling free() twice on a pointer.

Using valgrind can help identify these errors.

34

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

12 Monday, June 24, 2019

Linked Lists

Like inner classes in Java, C structures can have pointers to structures of the same type. This allows us to
define a Linked List’s node as follows:

Listing 26: Linked List Node

typede f s t r u c t node {
i n t data ;
s t r u c t node ∗next ;

} Node ;

Note that the structure tag inside of the typedef is necessary here since we have a self-reference inside our
definition of a node. Since pointers have the same size, the compiler won’t have an issue in determining the
size of next. However, this wouldn’t be possible if node weren’t a pointer.

In order to represent a Linked List, we declare a pointer to the head by typing something like Node *head.
The pointer allows us to modify the Linked List inside of various functions. So, functions that modify the
actual Linked List have function prototypes that take in a double pointer Node type.

For instance, a function which instantiates the Linked List might have header void create_list(Node **head),
and its body would simply be *head = NULL. In a similar manner, we’d need to pass in a double pointer to a
node in order to add an element to the list (pretty much, we need a double pointer whenever we’re modifying
the list).

There are two noteworthy types of Linked Lists traversal:

• The “print traversal,” which works by moving a current pointer forward after some processing:

Listing 27: Print Traversal

/* The print traversal */
Node curr = head ;
whi l e (cur r != NULL) {

/* Processing */
5 curr = curr−>next ;
}

If we need to visit every node in the list and do some processing, we perform the print traversal.

• The “Tom and Jerry traversal”, which works with two adjacent pointers. The left-most pointer
allows us to look back and access previous elements. The two pointers move in parallel.

Listing 28: Tom and Jerry Traversal

/* The Tom and Jerry Traversal */
prev = NULL;
curr = head ;
whi l e (cur r != NULL) {

5 /* Processing */
prev = curr ;
cur r = curr−>next ;

}

35

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

This traversal allows us to add a node before or after any element.

Here’s an example of an insert() function which maintains a sorted ordering in a Linked List:

Listing 29: Linked List Insertion

i n t i n s e r t (Node ∗∗head , i n t new value) {
Node ∗ cur rent = ∗head , ∗prev = NULL, ∗new item ;

whi l e (cur r ent != NULL && new value >
current−>data) {

5 prev = cur rent ;
cur r ent = current−>next ;

}

new item = malloc (s i z e o f (Node)) ;
10 i f (new item == NULL) {

r e turn 0 ;
}
new item−>data = new value ;
new item−>next = cur rent ;

15 i f (prev == NULL) { /* inserting at the beginning */
∗head = new item ;

} e l s e {
prev−>next = new item ;

}
20

r e turn 1 ;
}

Note that it would be incorrect to pass just a single pointer to head since the Linked List won’t get
modified.

When we construct a Linked List, we will want to add nodes one by one. Creating a node requires three
key steps:

1. Allocate memory for the node.

2. Store data in the node.

3. Insert the node into the list.

When we create a node, we write something like struct node *new_node followed by the command
new_node = malloc(sizeof(struct node))). Note that something like new_node = malloc(sizeof(new_node))
would be incorrect as new_node is a pointer variable (this command would allocate 8 bytes rather than the
actual amount of space needed). To change the data of a node, we use the arrow operator by doing something
like new_node->data = 5.

Something important to keep in mind is that, in our model, head itself is not a node. It’s simply a pointer
to the first node in our Linked List.

Deletion from a Linked List involves calling free() on the deleted node. Here is an implementation of the
delete() method:

Listing 30: Linked List Deletion

i n t d e l e t e (Node ∗∗head , i n t va lue) {
Node ∗prev = NULL, ∗ cur rent = ∗head ;

whi l e (cur r ent != NULL && current−>data != value) {
5 prev = cur rent ;

36

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

cur rent = current−>next ;
}
i f (cur r ent == NULL) {

r e turn 0 ; /* not found */
10 }

i f (prev == NULL) {
∗head = current−>next ; /* deleted first item */

} e l s e {
prev−>next = current−>next ;

15 }
f r e e (cur r ent) ;

r e turn 1 ;
}

37

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

13 Wednesday, June 26, 2019

Midterm 1 will be graded by sometime next week.

Operating on Memory Blocks

Like strcpy() operates on strings, there is an analogous function that operates on entire blocks of memory.
Namely, this function is memcpy, which has the following declaration: void *memcpy(void *dst, void *src, size_t n).
It works pretty much the same with strncpy() works: it takes a destination, source, and the number of bytes
to copy. A prerequisite to using memcpy() is that dst and src cannot be overlapping pieces of memory (for
instance, they shouldn’t be pointing to different portions of the same array).

So, what do we do if we need to quickly copy overlapping memory areas? We can use the memmove()
function, which has the declaration void *memmove(void *dst, void *src, size_t n), but it’s not as
efficient.

A possible implementation of memcpy() is presented below:

Listing 31: Memset and Memcpy

void ∗memcpy(void ∗dst , void ∗ src , s i z e t n) {
char ∗dp = dst ;
char ∗ sp = s r c ;

5 whi le (dp − (char ∗) dst < n) {
∗dp++ = ∗ sp++;

}

r e turn dst ;
10 }

Note how the function utilizes void pointers, which means that we can pass any type of pointer into the
function. We cast to char * so that we can iterate byte-by-byte.

The function memcpy() is really helpful. So far, to make copies of arrays of structures, we’ve been iterating
through every index with a for loop. But now, we can do all of this with a single statement. Nelson says that
this is important to know for exams.

Function Pointers

In the same way that we can have pointers to variables, we can also have pointers to functions. Function
pointers store the memory address of a function, which is possible as each function is located somewhere in
memory. Similar to an array, the name of a function can be seen as a variable that stores the function’s address.

We can use function pointers in pretty much the same way that we use normal pointers.

A procedure to write the declaration of a function pointer is to first just write the function prototype, add
parentheses around the function name (“hug the function”), and add an asterisk to the start of the newly
added parentheses (“kiss the function”). The following example illustrates the basics:

38

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 32: Introduction to Function Pointers

void p r i n t de c ima l (unsigned i n t i) {
p r i n t f (”%u\n” , i) ;

}

5 void pr in t hex (unsigned i n t i) {
p r i n t f (”%x\n” , i) ;

}

void p r i n t o c t a l (unsigned i n t i) {
10 p r i n t f (”%o\n” , i) ;
}

i n t main () {
/* The following is the declaration of */

15 /* fp as a function pointer variable */
void (∗ fp) (unsigned i n t) ;

/* Below both & and * are optional */
/* due to the use of the function */

20 /* call operator */

fp = pr in t hex ;
fp (16) ; /* prints "10" */
fp = &p r i n t o c t a l ;

25 fp (16) ; /* prints "20" */
fp = pr in t de c ima l ;
(∗ fp) (16) ; /* prints "16" */

r e turn 0 ;
30 }

On Line 16, we declare a function pointer fp using the exact procedure previously described. The key
thing to note there is that the parentheses around *fp indicates that fp is a pointer to a function, not a
function that returns a pointer.

Once we’ve got a function pointer, we can assign it to the name of a function (just as we could do with
arrays), and everything works fine. In fact, the C compiler even allows us to assign a function pointer to
the address of a function (like on Line 24), or even dereference while calling the function (like Line 27),
and everything will still work fine. However, the statements on Line 22 and 23 illustrate standard way to do this.

39

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

14 Thursday, June 27, 2019

Memcpy and Memset

The void *memcpy(void * destination, const void * source, size_t num) function is really similar to
the strcpy() function. The function memcpy() is used to copy a specified number of bytes from one memory
to another, whereas strcpy() copies the contents of one string into another. Also, strcpy() works exclusively
with strings, whereas memcpy() works with any type of data.

Another function is void * memset (void * ptr, int value, size_t num), which sets the first num bytes
in the block of memory pointed to by ptr, and sets them all to value. For instance, if you have a character
array arr, the statement memset(arr, 'a', 8) would set arr to have eight characters, each of which are a.

A more comprehensive example is provided below:

Listing 33: Memset and Memcpy

#inc lude <s t d i o . h>
#inc lude <s t r i n g . h>

#de f i n e MAXLEN 80
5 #de f i n e ROSTERMAX LEN 2

typede f s t r u c t student {
i n t id ;
char name [MAXLEN + 1] ;

10 } Student ;

void p r i n t r o s t e r (Student ∗ r o s t e r , i n t l ength) {
i n t i ;

15 f o r (i = 0 ; i < l ength ; i++) {
p r i n t f (”%d − %s \n” , r o s t e r [i] . id ,

r o s t e r [i] . name) ;
}

}

20 i n t main () {
Student r o s t e r [ROSTERMAX LEN] = {{10 , ”Kel ly ” } ,

{20 , ”John” }} ;
Student copy [ROSTERMAX LEN] ;
char name [MAXLEN + 1] ;

25

p r i n t r o s t e r (r o s t e r , ROSTERMAX LEN) ;
memcpy(copy , r o s t e r , ROSTERMAX LEN ∗

s i z e o f (Student)) ;
p r i n t r o s t e r (copy , ROSTERMAX LEN) ;

30 /* memset */
memset (name , ’ a ’ , MAX LEN / 2) ;
name [MAX LEN / 2] = ’ \0 ’ ;
p r i n t f (”%s \n” , name) ;

35 r e turn 0 ;
}

Upon running the code, Line 27 copies the contents of roster to the destination copy. It’s important to
note that this isn’t the same as making the two array pointers point to the same block of memory. Using
memcpy(), we’ve created two distinct blocks of memory with the same contents. Hence, the print statements
on Lines 26 and 28 print out the exact same thing. Subsequently, the memset call on Line 31 sets the first
half of the elements of name equal to 'a'. Consequently, the print statement on Line 33 prints fourty a’s.

40

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

We cannot copy overlapping memory areas when using memcpy() or memset().

Searching Files with Grep

grep is a command-line utility that can be used in Unix to search for patterns of characters in a file.
The general format for grep is grep [target_string] [file_name] Consider the following text file, called
information.txt:

Listing 34: Text Sample

This p r o j e c t i s about hashing ,
f i l e s , s t ru c tu r e s ,
p o i n t e r s
and dynamic memory a l l o c a t i o n (and more po i n t e r s) .

If we were to type grep point information.txt, the shell would return the lines in which the string
point is found (namely, the third and fourth lines). A useful flag that we can add is the -n flag, which returns
the line numbers alongside the lines that are found.

Now, what if we want to search multiple files? Like other Unix commands, we can use the * wildcard.
For instance, grep -n point * would print the lines and line numbers of every file in the current directory
that contains the string point. To search recursively (in subdirectories), we need the -r flag.

Data Representation

Character Representation

The two most common formats of representing characters are listed below:

1. ASCII is the most commonly used format; the capital letters are assigned numbers from 65-90, and
the lowercase letters are assigned letters from 97-122.

2. Unicode is another common format. It stands for Unicode Transformation Format, and there are
a few different versions. UTF-32 allows us to represent any character in any language (used by the
Government), UTF-16 is the most popular, and UTF-8 provides backwards compatibility with ASCII.

Integers

When we’re representing unsigned integers, the representation is more straightforward - all of the numbers
are stored using binary. Now, this works pretty easily for positive integers, but what if we want to represent
a negative number? The solution comes using a convention called two’s complement.

Under two’s complement, the positive value of a number is just its binary representation with its leftmost
bit equal to 0. To obtain a negative value, we invert all of the bits of the corresponding positive value, and we
add 1. The eight bits 00000101 typically correspond to the decimal number +5. Under the two’s complement
convention, the number −5 can be represented by 11111011.

Why do we use two’s complement instead of, say, just adding an extra bit at the start or end to indicate
the sign? The reason why we use two’s complement over just having an additional sign-indicating bit is
mostly for math-simplifying reasons1.

With two’s complement, The range of values that we can store with n bits ranges from −2n−1 to 2n−1− 1,
inclusive.

1https://stackoverflow.com/questions/1125304/why-prefer-twos-complement-over-sign-and-magnitude-for-signed-numbers

41

https://stackoverflow.com/questions/1125304/why-prefer-twos-complement-over-sign-and-magnitude-for-signed-numbers

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Floats and Doubles

We can store floats and doubles by writing the value we’re storing in the form

(−1)s ·m · re, (1)

where s is a bit (either 0 if we’re representing a positive number or 1 if we’re representing a negative number)
representing the sign of the number, m is a mantissa, r is the radix (base) we’re working in, and e is an
exponent to be determined.

This might seem confusing at first, but we can break this process down into one simple step: writing the
number in scientific notation.

All of the variables in Equation (1) comes from writing our number in scientific notation. For example,
if we want to store the decimal number 51.432, we can write it as 5.1432 · 101, and we can examine this
expression to see that m = 5.1432, r = 10, e = 1, and s = 0.

Similarly, if we’re storing the binary number 1001.1101, we would be able to write this as 1.0011101 · 23
and find m = 1001.1101, r = 2, e = 3, and s = 0.

The number of bits allocated for the radix, exponent, and mantissa are specified by the IEEE 754 floating
point standard. To store a negative exponent, we add an exponent bias to the exponent e, which normalizes
the number zero to all zeroes.

Imprecision with Real Numbers

Some real numbers, like 1/3 ≈ 0.33333, have infinitely long decimal representations. This can create
complications when we’re storing these numbers because we are trying to store an infinite decimal with finite
space. In summary, some of these bits get cutoff, which can cause some small imprecisions when dealing with
real numbers.

42

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

15 Monday, July 1, 2019

A nibble is a term used to describe four bits. A very important thing to remember from last lecture is that
each hexadecimal digit is represented by a nibble.

Unix File Permissions

Unix file permissions are based on the octal system. Every file is associated with three entities: the user
entity, the group entity, and the “other” entity. The user entity describes the file permission of yourself. The
group entity describes a set of users on the same system. The “other” section describes everyone else.

The chmod command can be used in Unix to change permissions of a file. The general format of the
command is chmod [settings] [file_name]. What we enter for the [settings] portion of the command
is a three-digit octal number, specifying the permissions for each entity. The first digit corresponds to the
specifications for the user, the second digit corresponds to the settings of the group, and the last digit is for
the “other” entity.

So, how does it work? We convert each octal digit in [settings] to a three-digit binary number, which
specifies whether the entity has read, write, and/or executing permissions, in that order.

As an example, suppose we execute chmod 400 a.out. The corresponding binary representation of 4 is
100, meaning that the user (the person executing the command) will be able to read the file, but they will
not be able to write to the file or execute it. Since the other two octal digits are 0, the permissions of the
group and “other” categories aren’t modified.

How do we determine what the [settings] number should be? This is easy - just work backwards.
Suppose we want the user and the group to be able to read and execute the file but not write to it. This
corresponds to the three-digit binary number 101, which has octal representation 5. So, chmod 550 a.out
does exactly what we want.

We can call chmod recursively on a directory using the -r flag.

Introduction to Assembly Language

Assembly is a low-level, readable translation of machine language. It is a programming language that we
work with when we want to see what the computer is doing. There are many assembly languages out there - in
this class, we will use AVR Assembly. We can generate the .S file corresponding to the assembly instructions
of a .c file by compiling with the -S flag when using avr-gcc. This is not allowed for projects/exercises.

A computer consists of some memory (RAM), and a CPU. Inside of the CPU, there is an arithmetic
logic unit, which is responsible for performing computations. Additionally, inside of the CPU, there are
registers, which are fast-access locations that instructions use instead of storing all values in memory.
Registers are all one byte. In AVR, there are 32 registers, labeled r0, r1, . . ., r31. A computer also has
a program counter, which is a register that specifies the next instruction to be executed. Finally, the
computer has an immediate, which consists of constants that are in the instruction itself.

A program written in AVR assembly has four components to it. Firstly, there are instructions, which
specify what the processor will execute. These instructions typically consist of a name, a list of registers,
and sometimes a constant value. In addition, there are labels, which represent an address. Labels are
typically denoted by some text, followed by a colon. They are also used to define functions. Finally, there are
assembler directives, which controls where code and data are placed, as well as comments.

How does our assembly code become machine language? We use an assembler (analogous to a compiler)
to produce the zeroes and ones associated with our instructions.

43

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

An Illustrative Example

To illustrate how a basic assembly program works, we’ll first consider some logically equivalent code written
in C:

Listing 35: C Program for Assembly Example

#inc lude <s t d i o . h>

#de f i n e LETTER A 65
#de f i n e NEWLINE 10

5

char x = 6 ; /* We are not using it */

i n t main () {

10 putchar (LETTER A) ;
putchar (NEWLINE) ;

re turn 0 ;
}

Note that we don’t actually use the variable x - it’s just there so that we can see how to create global
variables in assembly. What does this code segment do? It prints the letter A (which has ASCII value 65),
and it subsequently prints a newline character (which has ASCII value 10).

The corresponding assembly program is presented below:

Listing 36: Assembly Example

;;; Organization of typical avr program (; used for
comments (don’t use #))

;;; Symbolic constants
. s e t LETTER A, 65 ; Constant for A

5 . s e t NEWLINE, 10 ; Constant for \n

;;; Global data
. da ta ; Begins data section.

x : .by t e 6 ; Label ‘‘x" stores 6
10

;;; Program code
. t e x t ;Directive to start code

. g l o b a l main ; Makes main label
externally available

15 main :
;; main function. Task is defined at this

point. This function prints letter A
followed by newline character. We need the
newline to force the flushing of
character A.

c a l l i n i t s e r i a l s t d i o ; To call a function we
use the call instruction

20 l d i r24 , LETTER A ; The ldi instruction
loads a value into a register.

c l r r25 ; Sets high byte of putchar’s integer
argument to 0.

c a l l putchar ; Calls putchar to print the
character

44

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

l d i r24 , NEWLINE ; Initializes r24 with ’\n’
character ascii value

25 c l r r25 ; Sets high byte of putchar’s integer
argument to 0

c a l l putchar

c l i ; We need to stop the
program. Relying on cli and sleep.
s l e e p

30

r e t ; Adding this ret to show functions end
with ret but this ret is unreachable
(program already stopped)

Before we start analyzing this code, it should first be noted that lines beginning with dots are directives,
lines ending with colons are labels, lines beginning with a semicolon are comments, and everything else is an
instruction.

What observations can we make?

• Comments begin with a single semicolon, but we sometimes prefer to use more semicolons for sylistic
reasons.

• Symbolic constants are defined with .set directive followed by a target text, a comma, and a replacement
text. The target text never actually makes it to the machine code; it is processed by the assembler.

• By writing the .data directive, we indicate that what follows is a data section. We create labels by
having some text, followed by a colon. Here, our label is x, which stores the memory address of the
value 6. What follows .byte indicates the entity being stored at the memory address. This can be
written in decimal (as it is), hexadecimal, or even binary.

• The .text directive indicates that we’re done with our initial setup, and everything that follows is
actual code. This is a very important directive to have.

• The .global main directive allows main to be called outside of the current file. Functions, including
main, begin with labels. Also, functions end with ret.

• To call a function, we use the call instruction call init_serial_stdio. We will always call this function
to permit us to use input and output.

• To print the ASCII value of ‘A,’ we need to first load a value into a register using ldi. In our program,
we move 65 to register 24.

• After we load into register 24, we clear register 25 with clr. Why do we clear register 25? Because
putchar() assumes that the value it will display can be found in registers 24 and 25. This is a rule
defined by gcc. So we clear register 25 to contain no data.

• To flush the buffer, we load in the new line character to register 24, and we re-clear register 25 (in case
putchar messed it up). Finally, we call putchar again, and we get our desired output.

• The cli and sleep functions are necessary to stop the program.

Side-note: we can’t have floating-point types in AVR Assembly, but we can have integers, characters, and
strings.

45

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

16 Tuesday, July 2, 2019

No discussion today. Today is day two of Assembly.

Data Space Instructions

In order to transfer the contents of a register back into memory (like a variable), we can use the sts instruction,
which is short for “store to data space.” Using sts in assembly is analogous to assigning a variable some value.
On the other hand, we can use stored memory to write to a register using the lds instruction, which is short for
“load direct from data space.” The general syntax for sts is sts [data destination], [register source].
The general syntax for lds is lds [register destination], [data source].

Another useful instruction is inc, which simply increments the contents of a register. As we’d expect, the
syntax for this instruction is just inc [register name].

Consider the following code segment, which illustrates all three of these instructions:

Listing 37: Storing and Loading to Data Spaces

;;; Global data
. da ta

a : . by t e 0x2
b : .by t e 0b00000100

5 c : . by t e 0

;;; Program code
. t e x t

10 . g l o b a l main
main :

c a l l i n i t s e r i a l s t d i o
l d s r18 , a ; stores contents of a into r18.

15 l d s r19 , b ; stores contents of b into r19.
push r19 ; saves value of r19 on the stack.
add r19 , r18 ; adds contents of registers.
s t s c , r19 ; stores contents of r19 into c.

20 l d s r18 , c ; stores contents of c into r19.
i n c r18 ; increments r18
pop r19 ; restores r19
i n c r19 ; increments r19

25 c l i ; stops the program

What’s happening here?

On Lines 3, 4, and 5, we’re just declaring three global variables: a, b, and c. Like we saw yesterday, the
.data directive indicates that we’re starting our data section, and the .byte directive indicates that the value
that follows should be stored in the specified variable. In this case, we store 0x2 (hexadecimal for 2) in a, 100
(binary for 4) in b, and 0 in c. The reason why we’re using different base systems is just to clearly convey
that it is allowed.

All of our variables have been initialized, so we can begin writing our code (officially, this is indicated
by the .text directive on Line 8). In our main, we see an example of lds in action: the instruction takes a
register and some data, and it loads the contents of the data into the register. In this case, r18 stores 2, and
r19 stores 4. The contents of r19 are pushed onto the stack for safekeeping.

The add instruction on Line 17 stores the contents of r19 and r18 and stores the sum in r19 (it overwrites
the previous value, which is precisely why we pushed the original value onto the stack). On Line 18, the sts
instruction is used to store the sum into variable c. This value is incremented by one, the original contents of
r19 are restored, and the contents of r19 are incremented by one. The final value stored in r18 is 7.

46

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Instructions List

The list below summarizes some important instructions that we should become familiar with (we’ve already
seen some of these):

• ldi initializes a register with a constant value. Its general syntax is ldi [register] [constant]. For
instance, ldi r24, 5 would set the contents of r24 to 5. We can only load constants to the registers
r16, . . ., r31 (with the exception of clr, which loads in 0).

• lds loads data from memory into a register — we saw this in the previous example.

• sts stores data from a register into memory — we also saw this in the previous example.

• clr clears the contents of a register. Its general syntax is clr [register]. After this instruction is
executed, the contents of the register it was performed on becomes 0.

• add is used to add the contents of two registers. Its general syntax is add [register1], [register2].
After this instruction is executed, the contents of register1 are replaced with register1 + register2.

• inc is used to increment the value of a register by one. We saw this in the previous example.

• push is used to push a register value onto the stack. Its syntax is push [register].

• pop is used to move data from the top of the stack into another register. Its syntax is pop [register].
Note that you don’t have to pop to the same register that was pushed. There should be a one-to-one
correspondence between pop and push instructions.

• call is used to call a function, as we saw with the putchar example yesterday.

• ret is used to return from a function.

• nop is short for “no operation,” and it does nothing. Why does it exist? To make our processor wait
and do nothing.

• mov has syntax mov [destination register], [source register]. It copies the contents of source register
into destination register. Note that the name “move” is slightly misleading here - the contents of
source register aren’t moving anywhere - they are being copied, not moved.

One way to remember the syntax of some of these instructions is to note that, when we’re writing to a
register, the first register is always the target register where the result is being written to.

Caller/Callee Saving

The 32 registers that we use in Assembly are all global registers. What this means is that these registers are
shared among every function, including the main. To illustrate why this matters, suppose we were to store 20
in register r19 in the main. We then decide to call some function, which stores 100 in the register r19 as a
part of its processing. This change will also be reflected in the main (and everywhere else in the program).

Registers are shared across the entire program, which makes things more complicated. How can we avoid
overwriting registers used by functions? The solution to this problem comes from two protocols that we use:

1. Caller-saved protocol: When writing a function, we assume the programmer who called the function
has already saved the contents of registers from r18 to r27, r30, and r31. So, the function writer should
be operating on only these registers, and it’s up to the programmer to have already saved anything of
importance in these registers. We are expected to only operate on these registers when writing our
functions as well.

47

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

2. Callee-saved protocol: If a function writer wants to use registers r2 to r17, r28, or r29 inside of
their function, they need to be saving the registers prior to using them. Furthermore, the contents of
these registers need to be restored back to their original values before leaving the function.

What do these protocols mean to us? It means that there is less work for both the function writer and the
function caller. On one hand, the function writer can use several registers without worrying about overwriting
important data. On the other hand, the function caller has a set of registers where they can store data and
call a function with certainty that their data will not be overriden.

To better understand these two protocols, consider a blackboard that is shared among different professors.
The blackboard follows the caller-saved protocol: a professor who enters the classroom to teach is allowed to
erase whatever is on the blackboard. It is assumed that any important information on the blackboard has
already been recorded by the previous user. On the other hand, if the blackboard were callee-saved, the most
recent user would have to restore the blackboard to however it originally was, prior to their use.

We can use the fact that registers are shared across the entire program to pass and return values to
functions.

Arguments and Return Values

Unlike C, Assembly doesn’t have function headers: a function declaration is just a label. So, how do we take
in arguments and/or return values? Both of these tasks are accomplished through registers. If we have a lot
of arguments or return values and we run out of registers, we can use the stack (but we won’t need to worry
about that).

When we’re passing arguments to a function, we can just load the argument into a register for the function
to use. Arguments are aligned to start in even-numbered registers, beginning at r24 and going downwards.
Also, if we’re passing an odd number of parameters, there will always be one free register above them. So, for
instance, if we’re passing in a single char to a function, we would load the value of that character into r24,
and we would leave r25 empty as there is an odd number of parameters.

The conventions for passing arguments to functions are illustrated below:

• If we’re passing an argument that’s just one byte, the argument will go in r24 and r25 will be cleared.

• If we’re passing an argument that’s two bytes, the arguments will go in r24 and r25 (note how there is
no free register since there are two arguments).

• If we’re passing four bytes of arguments, the arguments will go in r25, r24, r23, r22, and there won’t
be any empty registers.

Once these registers have been loaded with the arguments, we can use the call instruction to go inside
of the function. The function will share the contents of these registers, and it will be able to perform any
necessary processing.

How do we return values from functions? It’s the same idea as passing arguments. The exact same
convention for passing parameters. For instance, if the function returns one byte, the return value is loaded
into register r24.

Note that the conventions for passing arguments and returning values align with the caller/callee-saved
protocol. Particularly, we are passing parameters through caller-saved registers. The function caller is
expected to have already saved any important data in these registers, as the function will be changing the
contents of these registers after processing.

After introducing these concepts, let’s look at an example that’s very similar to what we saw yesterday:

48

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 38: Assembly: Arguments and Return Values

. t e x t

. g l o b a l main
main :

5 c a l l i n i t s e r i a l s t d i o

; Printing ’A’
c l r r25
l d i r24 , 65

10 c a l l putchar

c l i
s l e e p

The function putchar from C takes in a single character as an argument. To pass in the argument ‘A,’ we
clear register r25 and load the ASCII value of ‘A’ into r24. This aligns with the convention we’ve previously
discussed. Finally, we call putchar, which is now free to do whatever it desires with these parameters. It will
no longer be guaranteed that register r24 and r25 are how they were prior to the function call.

Accessing Memory

In Assembly, lo8 and hi8 can be used to extract the lower and higher 8 bits of data (if we are passing in 2
bytes of data, there will be two 8 bit blocks). The instruction ldi r24, lo8(x) would load the lower byte of
variable x into register r24.

We have already seen that lds and sts are instructions that allow us to read and write to memory.
Assembly has three pairs of registers that allow us to access memory. These pairs of registers are called X
(resides in registers r26 and r27), Y (resides in registers r28 and r29), and Z (resides in registers r30 and r31).

X, Y, and Z represent addresses in memory (like pointers). Conventionally, the low byte is stored in the
even-numbered register, and the high byte is stored in the odd-numbered register.

Consider the following example:

Listing 39: Assembly: Arguments and Return Values

. da ta
pctd :

. a s c i z ”%d ”

5 va lue s :
. by t e 15
.by t e 16
.by t e 17
.by t e 18

10

. t e x t

. g l o b a l main
main :

15

c a l l i n i t s e r i a l s t d i o

l d s r24 , va lue s
c l r r25

20 c a l l p int
l d i r24 , 10
c l r r25
c a l l putchar

25 l d i r26 , l o8 (va lue s)

49

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

l d i r27 , h i8 (va lue s)
ld r24 , X
push r26 ; Caller−save
push r27

30 c l r r25
l d i r24 , 10
c l r r25
c a l l putchar

35 pop r27
pop r26
adiw r26 , 1 ; Move the pointer

ld r24 , X
40 c l r r25

c a l l p int
l d i r24 , 10
c l r r25
c a l l putchar

45

c l i ; Terminate program
s l e e p
r e t

First off, we see a new directive: .asciz. This just indicates that we are declaring a string literal.

Next, we note the label values is defined differently than what we’ve seen so far: there are multiple .byte
directives in its definition. The key thing to remember here is that a label is just an address in memory.
Hence, one way we can interpret values is the value 15: if we were to load this value somewhere, the value
15 would be loaded. We can alternatively interpret values as the name of an array with contents 15, 16, 17,
and 18.

When we call pint (the function for printing), 15 is outputted. We then load the ASCII value for a new
line, and we call putchar to print a new line.

On Lines 25 and 26, we load the low byte and high bytes of values into the registers r26, and r27. The
registers r26 and r27 are special: they represent a register pointer, denoted by X. Hence, on the subsequent
line, we can use ld to initialize r24 to whatever X points to (note that we use ld for register pointers instead
of lds). Finally, when we call pint again, 15 is printed again (as r24 now points to X).

Okay, now what if we want to print the other values in the array? We use pointer arithmetic, just like in C.
The adiw instruction is short for “add immediate to word’,’ and it has syntax adiw [register], [number],
and it increments the contents of [register] by [number]. This is exactly what’s happening from Lines 37
to 44. These lines increment X and print 16 along with a new line character.

Tomorrow, we will pick up from this point and do some more Assembly.

50

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

17 Wednesday, July 3, 2019

More Assembly today. Before we start, here’s some quick review from the past two classes:

• Assembly programs are written in a .S file.

• There is a .data directive, which denotes the portion of the code where we define data (like variables).

• A label represents a memory address (it can be viewed as a pointer to a variable or a function).

• A value in memory is defined using the .byte directive. Hexadecimal, decimal, or binary are all
permitted.

• The .global main directive is like the extern keyword in C—it indicates that the function can be
accessed from outside of the current file.

• The lds [register], [data] instruction stores data into the contents of register. Similarly,
ldi [register], [constant] allows us to load a constant value to register.

• The clr [register] instruction clears the contents of register to zero.

• Assembly has a built-in pointer register, denoted X, which represents the combination of registers r26
and r27. (Why do we need two registers? Memory addresses are 16 bits, or 2 bytes, so they need two
bytes).

• To initialize a pointer register like X, we use ldi along with lo8 and hi8 on r26 and r27, respectively.
We use these directives on whatever value we want X to point to.

• To load the contents of a register pointer into another register, we can use the ld instruction in the
form ld [destination register], [register pointer]. This is the C-equivalent of dereferencing a
pointer. If we now increment r26, we can write adiw r26, 1 to move the pointer X by one. Using inc
would also work, but it’s not great to use since with register pointers as it only operates on one register.
Assembly also supports a + operator. The instruction ld r24, X+ would load the contents of X to r24
and move the pointer by one.

• To save a value in a register, we use push in the form push [register] to push the contents of the
register onto the stack. You need to have one pop for every push.

More on Register Pointers

Consider the following code segment, which is an example of writing to memory:

Listing 40: Assembly: Register Pointers

;;; Example − writes the values 77 and 99 to memory
using sts and st;

;;; Also using X, Y, Z register pointers

5 . da ta
pctd :

. a s c i z ”%d ”

va lue s : ; represents data memory area where we will
write

10 ; note we are not using any .byte
directive

. t e x t

51

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

. g l o b a l main
15 main :

c a l l i n i t s e r i a l s t d i o

push r29 ; needs to save
r29,r28 (callee−saved)

push r28
20

l d i r18 , 77
s t s values , r18 ; assigning 77 to

location values (using sts)

l d i r28 , l o8 (va lue s) ; reading first value
using Y (r29:r28)

25 l d i r29 , h i8 (va lue s) ; r29:r28 = values
ld r24 , Y+ ; using Y+ (increases

pointer by one location)
c l r r25 ; printing the value
c a l l p int

30 l d i r18 , 99 ; writing location
after first entry

s t Y, r18 ; using st (NOT sts)
l d i r30 , l o8 (va lue s) ; using Z pointer

register to read value written
l d i r31 , h i8 (va lue s)
adiw r30 , 1 ; moving forward Z

pointer one position
35 ld r24 , Z ; reading value written

c l r r25 ; printing value
c a l l p int

40 c l r r25 ; newline
l d i r24 , 0xa
c a l l putchar

pop r28
45 pop r29

c l i ; stopping program
s l e e p

50 r e t

p int :
;; prints an integer value, r22/r23 have the

format string
l d i r22 , l o8 (pctd) ; lower byte of the

string address
55 l d i r23 , h i8 (pctd) ; higher byte of the

string address
push r25
push r24
push r23
push r22

60 c a l l p r i n t f
pop r22
pop r23
pop r24
pop r25

65

r e t

Everything up to the main is what we’re used to. Note, however, that the values label doesn’t have any

52

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

.byte directives—all this means is that the memory address corresponding to values hasn’t been initialized.

In this example, we’ll be using the Y register pointer (there’s no particular reason why we’re using Y—we
could have used X or Z instead), which corresponds to the registers r28 and r29. So, we save the contents of
these registers, and we load the low and high byte of r18 (which stores 77) into them. On Line 26, we load
what Y is pointing to into r24, and increment Y by one (so Y is now pointing to a new uninitialized area of
memory). Next, the value 77 is printed by calling pint.

Line 30 updates the contents of r18 to 99, and line 31 stores 99 into Y. Note that we use st, which works
with register pointers, instead of sts. Lines 32 to 33 initialize the register pointer Z, and Line 34 moves Z
forward by one (Z is now pointing to 99). Thus, loading this value into r24 and calling pint prints out 99.

Instruction Encoding and the Status Register

In Assembly, an instruction is represented by a set of bits which are assembled into a set of zeros and ones.
But, not all of these bits are telling the assembler what operation to perform. The portion of the bits that
encode what operation should be performed is known as the opcode.

So, what do the rest of the bits represent? The short answer is that it is dependent on the instruction
we’re considering. For instance, if we’re dealing with ldi, we’d have the opcode, another portion to store the
registers, and another portion to store the values of the registers.

The number of bits necessary to encode an instruction also varies. In AVR, however, we’re guaranteed
that instructions are either two bytes or four bytes. When memory is scarce, choosing the correct instruction
is vital to saving memory.

In an Assembly program, there’s a register—known as the status register—that keeps track of recent
operations (particularly mathematical operations). We can view what’s inside of the status register by typing
info r in gdb. Why is the status register important? It allows us to perform conditional executions, known
as branching.

Branch Instructions

We can use the status register to perform conditional execution of statements. This is done with the cp
instruction, which has syntax cp [register1] [register2]. This is used to compare the contents of two
registers.

Consider the following example:

Listing 41: Assembly: Register Pointers

;;; Example − if a == b prints ’Y’ else prints ’N’
;;; Change a and b to see different outputs

. s e t LETTER N, ’N ’
5 . s e t LETTER Y, ’Y ’

;;; Global data
. da ta

10 a : . by t e 0x6
b : .by t e 0x5

;;; Program code
. t e x t

15

. g l o b a l main
main :

c a l l i n i t s e r i a l s t d i o

53

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

20 l d s r18 , a ; reading a from memory
l d s r19 , b ; reading b from memory
cp r18 , r19 ; comparing registers
breq 1 f ; 1 is the target: f

represents forward
l d i r24 , LETTER N ; store N

25 jmp 2 f
1 : l d i r24 , LETTER Y ; store Y

2 : c l r r25 ; printing result
c a l l putchar

30

c l r r25 ; print newline
l d i r24 , 10
c a l l putchar

35 c l i ; stopping program
s l e e p

r e t

In this program, we read the value of a and b into registers r18 and r19. These values are compared with
cp on Line 22, which has syntax cp [register1], [register2]. The instruction breq is short for “branch if
equal,” and its syntax is breq [label]. Pretty much, this instruction utilizes the status register to check
the value of the preceding comparison. If the comparison indicated that the two variables were equal, the
program jumps to the target label (here, the f indicates that we’re jumping forward).

Suppose a 6= b. In this case, we don’t jump to label 1. Instead, we’ll store the letter N in r24. The next
instruction, jmp, indicates an unconditional jump (it always gets executed). Hence, once N is loaded into r24,
we’ll jump forward to label 2, and we’ll print the result along with a new line.

Now suppose a = b holds. In this case, we’ll jump over the statement that loads N into r24. Instead, we’ll
load Y into r24, and we’ll continue from there and print the character along with a new line.

The advantage of using cp is that we don’t have to modify the registers.

Some other branch instructions are listed below:

• cpi [register], [constant] compares the contents of a register to a constant.

• tst [register] tests whether a register is non-positive.

• breq [label] branches to label if the previous comparison indicated an equality.

• brne [label] branches to label if the previous comparison did not indicate an equality.

• brge [label] branches to label if the previous comparison indicated register1 was greater than or
equal to register2. This should be used on signed integers.

• brlt [label] branches if register1 is strictly less than register2. This instruction should also be
used for signed integers.

• brlo [label] branches to label if the comparison is strictly less than. It is used with signed integers.

• Finally, brsh [label] branches to label if the comparison is greater than or equal to. It is used with
unsigned integers.

It’s important to remember that branching instructions always look at the last result with the status
register. Thus, comparison instructions need to come immediately before the branch instructions.

Here’s another example.

54

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 42: Assembly: Do-While Loop

;;; Example − prints values 1 to 5 (do while)

;;; Global data
. da ta

5

pctd :
. a s c i z ”%d ”

uppe r l im i t : . by t e 0x5
10

;;; Program code
. t e x t

. g l o b a l main
15 main :

c a l l i n i t s e r i a l s t d i o

push r15 ; callee−save
push r16

20

l d s r15 , uppe r l im i t ; upper limit
l d i r16 , 1 ; loop starts, r16 is

the iteration variable

1 : mov r24 , r16 ; printing value
25 c l r r25

c a l l p int

inc r16 ; increasing iteration
variable

cp r15 , r16 ; checking whether we
reach limit

30 brge 1b ; go back as long as
r15 >= r16

c l r r25 ; newline
l d i r24 , 10
c a l l putchar

35

pop r16 ; restoring registers
pop r15

c l i ; stopping program
s l e e p

40

r e t

p int :
;; prints an integer value, r22/r23 have the

format string
45 l d i r22 , l o8 (pctd) ; lower byte of the

string address
l d i r23 , h i8 (pctd) ; higher byte of the

string address
push r25
push r24
push r23

50 push r22
c a l l p r i n t f
pop r22
pop r23
pop r24

55 pop r25

r e t

55

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

There isn’t anything confusing here. Register r15 stores the upper limit of loop. After each iteration. we
compare the iteration variable, stored in r16, to the upper limit. If we haven’t hit the limit, we branch back
to the start of the loop. Similarly, we could implement a while loop by performing an initial comparison.

56

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

18 Monday, July 8, 2019

When performing branching instructions, it’s important to remember to use the one corresponding to the
correct type (there are different instructions for unsigned vs signed integers). Also, keep in mind that adiw
(or post-incrementation) should be used for moving a pointer rather than inc (or dec to decrement).

We’ve already seen the add instruction. There are also sub and mul instructions to subtract and multiply
the contents of two registers; their syntaxes is exactly the same.

The movw has syntax movw [register1] [register2], and it copies the register pair register2 to
register1. This instruction is useful when moving the results of multiplication.

The lsl and lsr perform left and right bit-shifts, respectively. They both require one register as input,
and the result is that the contents of the register are either multiplied or divided by two (respectively).
Unfortunately, there is no division operation; however, one could implement it themselves.

Large Addition and Unsigned Multiplication

Here, we’ll discuss some constructs surrounding math in Assembly.

Consider the following code segment:

Listing 43: Unsigned Multiplication

;;; Example − Illustrates how to use mul (unsigned
multiply)

;;; Global data

5 . da ta

pctd : . a s c i z ”%d ” ; defines a string (nul
terminated)

a : . by t e 200
b : .by t e 150

10

;;; Program code
. t e x t

. g l o b a l main
15 main :

c a l l i n i t s e r i a l s t d i o

c l r r25
l d s r18 , a ; reading value for a

20 l d s r24 , b ; reading value for b
add r24 , r18 ; just using add is

wrong for 200 and 150
adc r25 , r25 ; we need adc
push r24 ; caller save
push r25

25 c a l l p int
c a l l p r t new l in e
pop r25 ; restoring caller save
pop r24

30 adiw r24 , 5 ; adds five to previous
result (r25:r24 is updated)

c a l l p int
c a l l p r t new l in e

l d i r24 , 8 ; multiplication
35 l d i r25 , 6

57

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

mul r24 , r25 ; result in r1:r0
movw r24 , r0 ; copies r1:r0 to

r25:r24
c l r r1 ; we should always make

sure is back to 0

40 c a l l p int ; printing
multiplication result

c a l l p r t new l in e

l d i r24 , 32 ; multiplying by 2
l s l r24

45 c a l l p int
c a l l p r t new l in e

; next example shows we need to use brlo with
unsigned

l d i r24 , 2 ; comparison between
r24 and 11

50 cp i r24 , 11 ; the smaller will be
printed

b r l t 1 f ; try r24 with 5, 199
(fails)

l d i r24 , 11
1 : c a l l p int

c a l l p r t new l in e
55

c l i ; stopping program
s l e e p

r e t
60

pr t new l in e :
;; prints new line
c l r r25
l d i r24 , 10

65 c a l l putchar

r e t

p int :
70 ;; prints an integer value, r22/r23 have the

format string
l d i r22 , l o8 (pctd) ; lower byte of the

string address
l d i r23 , h i8 (pctd) ; higher byte of the

string address
push r25
push r24

75 push r23
push r22
c a l l p r i n t f
pop r22
pop r23

80 pop r24
pop r25

r e t

We can briefly recap what we already know to explain what’s going on here.

At first, the variable pctd is declared as a string, and a and b are declared as integers. Subsequently, we
compute the sum of a and b in r24. But since a+ b = 200 + 150 = 350 > 256, we cannot store the contents of
the sum in the eight bit register r24 alone. So, how do we fix this issue? We can make use of the r25 register.

It turns out that there’s an adc instruction with format adc [destination] [source], which helps us

58

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

deal with overflows (it’s short for “add with carry”). When we perform the add r24, r18 instruction, the
bits that don’t overflow are added correctly. If there is a carry from an add instruction, a special bit in the
status register is marked, and the value of the carry is kept for safekeeping. Basically, the adc instruction
allows us to perform addition that exceeds 8 bits inside of a register pair. If we know that the numbers we’re
dealing with are small, we don’t need to worry about a carry. We need at most an (n+ 1)-bit number to
represent the sum of two n bit numbers.

After this addition is performed, we push r24 and r25 for safekeeping (note that we can’t clear r25 as
we usually do—this would remove our carry value), and we call pint to print the sum. As we’d expect, the
sum is 350. Moreover, now we need to perform the adiw instruction to add to this quantity (adiw acts on a
register pair, whereas add doesn’t). Now we move to unsigned multiplication.

On Lines 34, 35, and 36, we load 8 into r24, 6 into r24, and subsequently multiply the two numbers. Since
the product of two 8-bit numbers is at most a 16-bit number, we require two registers to hold the results
of multiplication. By default, Assembly moves the results of the mul instruction to the r0:r1 register pair.
We should retrieve these values using movw immediately since the register pair r0:r1 is temporary. Also, by
convention, we clear r1 back to zero (not r0!). Finally, we discuss bit-shifting. First, a simple example, which
will be followed by a more intricate one.

On Lines 43 and 44, we load 32 into 32 and call the lsl instruction (which is short for “logical shift left”)
to perform a left bit shift. The resulting value in r24 is 64. This was a very easy example.

Between Lines 49 and 54, we appear to be printing the value stored in r24 if it’s less than 11, and 11
otherwise. However, we’re using brlt to compare, which is intended for signed integers (the unsigned analogue
would be brlo). Although the example would work for the values provided (along with several other values),
if we were to load 5 into r24 and compare it against 199, we would unexpectedly print 199. Why? The two’s
complement signed representation of 199 is less than 5. This example emphasizes the importance of using the
correct branch instruction.

Even More on Register Pointers

We’ve already seen that something like ld [register] X+ loads the contents of X into register and
subsequently moves X forward one. We can also pre-decrement our register pointer with, ld [register] -X.
There is no post-decrementation or pre-incrementation.

It’s important to remember that using register Y requires callee-saved registers, meaning that we need to
push registers r28 and r29 prior to using them. As a result, it’s usually a good idea to utilize the X and Z
pointers prior to using the Y pointer (we’d lose points on exam if we needlessly used the Y pointer when it
isn’t necessary).

The increment and decrement operations don’t affect the status register. So, if we were to perform a
comparison, and increment our register pointer, we’d still be able to perform branching instructions as we’d
want.

Another helpful instruction is ldd, which has syntax ldd [register], [pointer] + [constant].
This instruction only works on the Y and Z pointers, and it simply loads the location pointed to by
pointer + constant into register without actually modifying pointer.

The Call Stack and Recursion

So far, we’ve been using the stack to save values using the push and pop instructions. The stack can also be
used to support function calls, which is particularly useful when implementing recursive programs.

When you call a function, the address of the instruction that follows the call is placed on top of the stack.
When the ret instruction is executed at the end of the function, whatever is on top of the stack (i.e. the
instruction after the terminating function) is executed next. What does this mean to us? It emphasizes the im-
portance of a one-to-one mapping between push and pop calls. If you’re using the stack to preserve a value, and

59

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

the correct number of pops aren’t called, the ret instruction of the function call will return to an invalid address.

The following program computes the factorial of a number through recursion:

Listing 44: Assembly: Factorial

. g l o b a l f a c t o r i a l
f a c t o r i a l :

;; recursive computation of factorial
t s t r24 ; base case check (if value

== 0)
5 breq 1 f

push r24
dec r24
c l r r25
c a l l f a c t o r i a l ; recursive call

10 pop r23 ; (original value of r24)
mul r24 , r23 ; factorial(n − 1) * n
movw r24 , r0 ; copies r1:r0 to r25:r24

; movw is a register pair
copy

c l r r1 ; making sure is 0
15 jmp 2 f

1 :
c l r r25 ; base case (value of 1)
l d i r24 , 1

20 2 :
r e t

This is self-explanatory. We’ve got a base case and a recursive call. What’s important to keep in mind
when tracing this program is that call factorial will result in the factorial of n− 1, which will be stored in
register r24. That’s why we pop to r23 instead of r24 (so the result isn’t overridden).

Starting on Wednesday, we’ll discuss process control, which is the last big topic of our class.

60

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

19 Tuesday, July 9, 2019

Today, discussion is really short since we had a quiz. Just a couple of examples on encapsulation, abstraction,
and some other miscellaneous things in C.

Encapsulation and Abstraction

In general, C has limited support for encapsulation. One of the primary features that C provides for
encapsulation is the incomplete type. An example of an incomplete type would be a declaration of a
structure without specifying its contents, like struct my_type;

This indicates to the compiler that my_type is a structure, but it does not provide any information about
its members. This allows the user to complete the type elsewhere.

As a more illustrative example, suppose we want to hide the following structure:

Listing 45: Secret Structure

s t r u c t s e c r e t {
char name [MAXLEN + 1] ;
i n t age ;

} ;

We can then create a separate .h header file with all of our function prototypes. This file will contain
the line struct secret; to declare the structure secret (even though the definition of secret is not in the
.h file). If we then compile these files, along with a main with other functions, the object file will hide the
implementation of the secret structure. We’d give our program users the .o and the .h file, which abstracts
the function and structure implementations from the user (but, they can still use the functions since they
have the function prototypes).

Miscellaneous

• Recall that dereferencing a null pointer results in a segmentation fault. Although this is true, we
wouldn’t get a segmentation fault if we dereference the pointer inside of a sizeof() call. For example, if
we declare int *p = NULL, a subsequent sizeof(*p) expression doesn’t result in a segmentation fault.

• Void pointers can be casted to any type of pointer – it’s up to the programmer to make sure we’re
doing things right.

61

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

20 Wednesday, July 10, 2019

Process Control Terminology

Before we get started with process control, we need to introduce some new terminology.

The kernel is a component of the operating system that’s responsible for maintaining security, performing
file management, and managing processes. It’s like the “manager” of the operating system—it enforces
“policies.”

When a program is running, there are various tasks that we don’t consider to be sensitive (i.e. dangerous
to the operating system). Hence, the program doesn’t require too many permissions. We say that these
programs are run in user mode. When we’re executing a program in user mode, we can’t perform any
sensitive (dangerous) operations, and we don’t have the privilege of accessing everything associated with the
operating system.

By contrast, some instructions are restricted so that only the operating system itself can execute them.
When a program has this privilege, we say that the program is running in kernel mode. Some examples of
operations a program can perform that requires kernel mode include halting the CPU or performing I/O.

Context switching is a feature utilized by an operating system to store the state of a process so that it
can be restored and its execution can be resumed from the same point at a later time. This happens really
fast, so it seems almost as if we’re performing multiple tasks at the same time. For example, if we’ve got a
single CPU, and we’re programming while listening to music, our CPU would be rapidly context switching
the two processes. What dictates how the context switch chooses which processes to pause and resume? The
kernel does.

System Calls

A system call is a special function that allows us to interact with the kernel. Functions that permit us to
perform file I/O, create processes, and read the system clock all perform system calls.

System calls aren’t the only way in which we can interact with the kernel. We can also use the shell,
which allows for indirect interaction (when we’re copying or moving files, we’re interacting with the kernel).
Are there different types of shells? Yes - so far, we’ve been using the tcsh shell; however, bash and korn
are also shells (to change to either of these shells, we can execute the bash or ksh commands in Unix).

Processes vs. Threads

A thread is an execution path, almost like a program inside of another program. For example, suppose we’ve
designed a clock that works in our own timezone. But now, we want to design four clocks, each of which
represent a different timezone. We’ve already got one working clock, so we can spawn four threads, each of
which represent a different timezone. The program will allow each thread to run for the correct amount of
time.

Here’s another example. Suppose we’re computing the sum of an array. We can use one thread to compute
the sum of the first half, and a second thread to compute the sum of the second half. Depending on our
hardware, this can save time.

What’s the difference between a thread and a process? Threads lives inside of a process. The most
minimalistic representation of a thread includes the stack (used to support function calls) and the program
counter. We can have multiple threads helping us run a process with context switching.

Something key thing to note is that threads share the same resources. That is, if a process opens a file,
all of the threads share the same file. Moreover, if a process dynamically allocates memory, all of the threads
have access to the memory (the heap and global variables are shared by all of the threads).

62

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

A real life analogy is a household. A house can be viewed as a process, whereas the people inside of them
are the threads. Everything inside of the house (process) is shared by the people (threads).

Every process goes through several states during its execution. Collectively, these states are referred to as
the process life cycle. A pictorial representation of this life cycle is presented below:

What’s happening here?

• When a process is in the ready state, it is not currently executing; however, it is ready to begin
executing. It is waiting for the kernel to tell it to start running.

• Once the kernel tells the program to run, the process moves to the running state. What can happen
from here? The program might move into the waiting state, where it awaits I/O. Alternatively, the
program can finish executing and move to the waiting to be reaped stage. Finally, there’s one last
scenario: the program can be interrupted (by perhaps the programmer). If this happens, the process
moves from the running stage back to the ready stage.

• Let’s say our program takes in user input. Once it starts running, it’ll move to the waiting state.
Interestingly, once the I/O is completed, the program can’t immediately go back to the running state
again. It needs to go back in line to the ready state before it can go back into the running stage.

Signals

A signal is a method that allows two processes to communicate. A process is able to recognize when it
receives a signal, and the process is able to react in response to that signal.

We’ve already been using signals: CTRL + C is a signal, and the program responds by terminating. Formally,
the name of this signal is SIGINT.

Some other signals that are used by the kernel include the following:

• SIGSEGV is a signal indicating a segmentation violation (a.k.a. segmentation fault)

63

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

• SIGFPE is a signal used to indicate a floating point exception.

• SIGCHILD is a signal used to indicate that a child process has terminated.

A program doesn’t necessarily terminate when it receives a signal — it completely depends on the signal
being sent.

Creating Processes

In Unix, a new process (called a child) is created by an existing process (called a parent), making a
parent-child relationship between the two processes. The new child process will then be able to execute the
program we want.

How do we create a new process? The system call do create a new process is fork(). This call creates a
copy of the parent process.

What gets copied when we fork a process? Just about everything:

• All variables (the entire address space) gets copied.

• The point of execution is copied (i.e. parent and child processes continue execution after the fork system
call)

• The file descriptor table (files opened by the process) is copied.

The stack, heap, data, and code all get executed.

What are the benefits of forking if we’re getting the same exact thing? Well, once we’ve forked a program,
we can modify the child process and change it to a different program. This is done wit a system call that
we’ll see later on.

Let’s look at an example in C:

Listing 46: Forking 1

#inc lude <s t d i o . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>
#inc lude <un i s td . h> /* Required by fork() */

5 #inc lude <sys / types . h> /* Required by pid_t */

i n t main () {
p id t r e s u l t ;

10 p r i n t f (”He l lo \n”) ;

r e s u l t = fo rk () ;
i f (r e s u l t < 0) {

e r r (EX OSERR, ” f o rk e r r o r ”) ;
15 }

p r i n t f (”End : Value returned by fo rk : %d\n” , r e s u l t) ;

r e turn 0 ;
20 }

First off, the pid_t data type represents a signed integer used for process identification. (The _t portion
of a data type means that the data type is internally mapped to an integer). Thus, we can print the variable
result using the %d format specifier.

64

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Next, we set result to fork(), which returns a signed integer. The fork() function returns a duplicate
process of the program currently being executed. Once this fork() takes place, the processes will exist, and
they will be executing after the function call. It doesn’t concern us which process is executing first. All that
we know is that we’ll have two processes, both of which will be executing after Line 12.

Now, what’s the return value of fork()? It’s the Process ID (PID) associated with the child process. If
we again were to call fork() on a child, the return value would be zero: the PID of a child process is always
zero. So, the variable result has two different values: the PID of the child process in the parent process, and
0 in the child process.

Can forking fail? Yes. There is a limit to the number of processes we can fork since space is limited. If
the fork fails, −1 is returned, which is why we have the conditional from Lines 13 to 15.

Finally, the program prints the PID of the newly created child process.

Here’s another example:

Listing 47: Forking 2

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>

5 #inc lude <un i s td . h>
#inc lude <sys / types . h>

i n t main () {
p id t r e s u l t ;

10 i n t x = 20 ;
char ∗p ;

p r i n t f (”He l lo \n”) ;

15 p = malloc (80) ;

r e s u l t = fo rk () ;
i f (r e s u l t < 0) {

e r r (EX OSERR, ” f o rk e r r o r ”) ;
20 }

/* By using the value returned by fork, we */
/* we can tell which process is the parent */
/* and which is the child. We can assign */

25 /* different tasks to each one. */
/* Notice the address values printed by */
/* the processes. */

i f (r e s u l t == 0) {
30 p r i n t f (” I am the ch i l d (i n c r e a s e s x) %d\n” , ++x) ;

p r i n t f (”Value o f address in ch i l d %p\n” , (void
∗)p) ;

} e l s e {
p r i n t f (” I am the parent (de c r ea s e s x) %d\n” ,

−−x) ;
p r i n t f (”Value o f address in parent %p\n” , (void

∗)p) ;
35 }

f r e e (p) ; /* Both must free */

p r i n t f (”Done\n”) ;
40

r e turn 0 ;
}

65

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

This time, before we fork our process, we declare the variables x and p. We also dynamically allocate
memory for p. Now since forking copies all components of the code, our new process will also have these
variables. The only difference is that the variable result will be the PID of the child process for the parent
process, and it will be 0 for the child process. We can use this fact to produce different outputs.

By comparing the PID to 0, we can obtain different outputs between the child and parent processes (for
the child process, the Boolean expression result == 0 will evaluate to true). In the program above, we’ll
increase the variable x to 21 for the child process; the variable x will remain 20 in the parent process.

Since we’ve dynamically allocated memory prior to forking, our child process has inherited this new
memory area as well. So, we need to call free() in both the child and parent process (somewhere that’s
accessible by both processes).

One thing that is strange, however, is that when we print the address of the pointers, we’ll obtain the
same memory address. It’ll appear as if the pointer p is pointing to the same place for both the child and
parent process. However, this is not the case — the operating system will convert them to distinct areas in
memory when it is needed.

Something else to note is that even though the fork() came after the variable declarations, the child
process still inherits all of the variables that come before it. The only thing determined by where the fork()
call comes is where the point of execution for the child process is set to.

The getpid() and getppid() functions return the PID of the process currently executing that function.
What happens if we call getppid() on a process that doesn’t have a parent? The PID of the the shell will be
returned—the shell is the ancestor of all processes.

Recall that the newline character, \n, is used to flush the buffer. If we use printf without the new line
character, whatever we’re printing is placed in memory; it isn’t printed until the buffer is flushed. So, if
we print a statement without flushing the buffer prior to forking a process, the buffer also gets duplicated.
Consequently, if we perform another printf statement (after the fork call), the message that came before
the printf will be printed twice. Long story short, it’s usually a good idea to make sure the buffer has been
cleared prior to forking.

Now let’s look at an application of forking:

Listing 48: Forking 3

/***/
/* The program reads two integer values. The */
/* parent will call even_odd on the first */
/* value and the child on the second. Notice */

5 /* we need the exit(0) in the process_values() */
/* function, otherwise you will be printing */
/* "Done in Main" twice. In this example we */
/* do not want the child to return to main(). */
/***/

10 #inc lude <s y s e x i t s . h>
#inc lude <s t d l i b . h>
#inc lude <e r r . h>
#inc lude <un i s td . h>
#inc lude <sys / types . h>

15 #inc lude <s t d i o . h>

void p r o c e s s v a l u e s (i n t x , i n t y) ;

void even odd (i n t a) {
20 i f (a % 2 == 0) {

p r i n t f (”%d i s even\n” , a) ;
} e l s e {

p r i n t f (”%d i s odd\n” , a) ;
}

25 }

66

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

i n t main () {
i n t m, k ;

30 p r i n t f (”Enter two i n t e g e r va lue s : ”) ;
s can f (”%d%d” , &m, &k) ;

p r o c e s s v a l u e s (m, k) ;

35 p r i n t f (”Done in Main\n”) ;

r e turn 0 ;
}

40 void p r o c e s s v a l u e s (i n t x , i n t y) {
p id t pid ;

i f ((pid = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r ”) ;

45 }

i f (pid != 0) { /* parent code */
even odd (x) ;

} e l s e { /* child code */
50 even odd (y) ;

e x i t (0) ; /* WHY WE NEED IT? Remove it and run */
}

}

This is pretty self-explanatory. We’re reading in two integers, both of which are stored in the stack. Then,
we call process_values. If we’re the parent process, we’ll check whether x is even or odd, and if we’re the
child process, we’ll check whether y is even or odd. Note that we execute exit(0) at the end of the child’s
code in order to terminate the child process. We need this because, otherwise, the statement “Done in Main”
will be printed twice. The key takeaway is that even though the child process was created locally in the
function, it still inherits the main and other properties.

67

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

21 Friday, July 12, 2019

Last class, we started process control. Something important to keep in mind is that kernel can only hold a
finite number of processes.

What happens if we try to exhaust the number of processes permitted? Consider the following code:

Listing 49: Fork Bomb

#inc lude <un i s td . h>
i n t main () {

whi le (1) {
f o rk () ;

5 }
}

The above code segment tries to repeatedly spawn new processes. This is known as a fork bomb, and it
exhausts all the possible space in a process table. An insecure system might crash, but most systems have
something in-place to identify and stop these attacks2.

Reaping Child Processes

After a child process finishes executing, we reap it in order to remove its details from the process table. Until
the terminated process is reaped, we say that the process is a zombie process.

We can release zombie processes with the wait() or waitpid() system calls. What do they do? Once the
program encounters a wait() call, the program will wait until the child finishes until completion. Thus, the
parent process will be blocked until the child continues.

Consider the following example, which illustrates the wait() system call:

Listing 50: Wait Example

#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>
#inc lude <un i s td . h>

5 #inc lude <sys / types . h>

i n t main () {
p id t pid , r e tu rned va lue ;

10

i f ((pid = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r ”) ;

}
i f (pid) { /* parent code, pid != 0 */

15 p r i n t f (”Parent wai t ing f o r ch i l d \n”) ;
r e tu rned va lue = wait (NULL) ; /* nothing happens

until child exits; reaps the child */
p r i n t f (”Value returned by wait : %d\n” ,

r e tu rned va lue) ;
p r i n t f (”Parent pid = %d ; my ch i l d had pid =

%d\n” , getp id () , pid) ;
} e l s e { /* child code */

20 s l e e p (4) ; /* simulating child’s processing,
waiting 4 seconds */

2A fork bomb is a form of denial-of-service attack

68

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

p r i n t f (”Child pid = %d ; my parent has pid =
%d\n” , getp id () , getppid ()) ;

}

r e turn 0 ;
25 }

As we’ve seen before, we’re forking the program at the start. Then, if we’re the parent process, we’ll set
returned_value to wait(NULL). What does this do? wait() does two things: (1) it reaps the child once it
has finished executing, and (2) it blocks the parent from executing until the child has finished.

So now our program execute the child’s code. The child’s code calls sleep(4) to wait for four seconds.
Finally, it prints information about its own process as well as its parent process.

After the child finishes executing, wait(NULL) will reap the child process, and the parent process will
continue its own execution.

Some other things to note:

• We’re passing NULL into our wait() call – why? wait() can be used to return information about what
happened to the child process (i.e. a seg fault). If we just want to reap after the child process finishes,
we pass in NULL.

• Will the order of the printed statements ever change? No – the child’s code will execute first, followed
by the parent’s code.

• Why didn’t we call wait() in our previous examples? We should have. Our previous examples didn’t
reap created child processes.

• What happens if a process doesn’t reap a child? Formally, we call such a process an orphan, and the
init process will take care of it (created by the shell). Note that init will only intervene when the
process completes, so this isn’t helpful in large programs.

Why is reaping important? Our program would eventually crash without it: the process table will get
filled up if we create several processes without making space for more.

The system call wait() has function header pid_t wait(int *status). It returns −1 once everything
has been reaped. Otherwise, it returns the PID of the child that is being reaped. What if we don’t know how
many children there are? We can just perform a while loop, and wait until wait() returns −1.

The status parameter that wait() takes in acts as an out-parameter. We can then use various pre-defined
macros to see what took place.

The following example demonstrates how the out-parameter can be used:

Listing 51: Wait Status

/*
* 1. Do not confuse the exit status (value returned

from
* the program using exit or return from main) with
* the value that is initialized by wait (e.g.,

wait(&status)).
5 * The status integer has the exit status and

additional
* information. We use the macros

WIFEXITED(status),
* WEXITSTATUS(status) and WTERMSIG(status) to

retrieve that information.
*

69

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

* 2. WIFEXITED(status) − true if the program
terminated

10 * normally via exit or return from main. Two
examples

* of when a program does not terminate normally:
when

* a segmentation fault takes place or if the
program is

* terminated via a signal (e.g., kill
<process_id>).

*
15 * 3. Remember that in Unix a program indicates it

completed
* the expected task by returning 0 (e.g., exit(0)).
*
* 4. You can list signals by using kill −l
*/

20

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>

25 #inc lude <e r r . h>
#inc lude <un i s td . h> /* Required by fork(), getpid,

getppid */
#inc lude <sys / types . h> /* Required by pid_t */

i n t main () {
30 p id t p r o c e s s i d ;

i f ((p r o c e s s i d = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r ”) ;

}
35

i f (p r o c e s s i d != 0) { /* Parent code */
i n t s t a tu s ;

wait(& s ta tu s) ;
40 i f (WIFEXITED(s ta tu s)) {

p r i n t f (”Child f i n i s h e d normally (v ia e x i t or
re turn in main) \n”) ;

i f (WEXITSTATUS(s t a tu s) == 0) {
p r i n t f (”Child completed the task

s u c c e s s f u l l y \n”) ;
} e l s e {

45 p r i n t f (”Child did NOT complete the task
s u c c e s s f u l l y \n”) ;

}
} e l s e {

p r i n t f (”Child did NOT f i n i s h normally (v ia
e x i t or re turn in main) ; s i g n a l must have
occured \n”) ;

p r i n t f (”REPORT:\n”) ;
50 p r i n t f (”WIFEXITED(s ta tu s) : %d\n” ,

WIFEXITED(s t a tu s)) ;
p r i n t f (”WEXITSTATUS(s t a tu s) : %d\n” ,

WEXITSTATUS(s t a tu s)) ;
p r i n t f (”WTERMSIG(s t a tu s) − (s i g n a l caused ch i l d

to terminate) : %d\n” , WTERMSIG(s t a tu s)) ;
}

55 e x i t (0) ; /* Parent exit */

} e l s e { /* Child code */
i n t va lue ;

70

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

60 p r i n t f (”Enter case (1 , 2 , 3 , 4) : ”) ;
p r i n t f (”Or in s t ead o f en t e r i ng a number k i l l the

ch i l d p roce s s (k i l l <pro c e s s i d >) (s ee
output) \n”) ;

s can f (”%d” , &value) ;
i f (va lue == 1) {

char ∗p = NULL;
65 ∗p = 20 ;

e x i t (100) ;
} e l s e i f (va lue == 2) {

i n t x ;

70 p r i n t f (”Enter p o s i t i v e i n t e g e r : ”) ;
s can f (”%d” , &x) ;
p r i n t f (”Squared value i s %d\n” , x ∗ x) ;
e x i t (0) ;

} e l s e i f (va lue == 3) {
75 i n t x = 0 ;

p r i n t f (”%d\n” , 1 / x) ;
e x i t (30) ;

} e l s e {
i n t x ;

80

p r i n t f (”Enter p o s i t i v e i n t e g e r > 0 : ”) ;
s can f (”%d” , &x) ;
i f (x > 0) {

p r i n t f (”The cube o f %d i s %d\n” , x , x ∗ x
∗ x) ;

85 e x i t (0) ;
}
e x i t (40) ;

}
}

90 }

Here, we’re doing almost the same thing we did before. We fork the process, and the wait call on Line 39
waits for the child process to finish to execution, while using status as an out-parameter.

The child process requests an integer and does some sort of processing, some of which create errors (for
example, entering 1 leads to a segmentation fault). Subsequently, we return to the parent code, and we use
the WIFEEXITED macro, which tells us whether or not the child program has terminated. If it has terminated,
we’ll check whether the return value was 0 with the WEXITSTATUS macro. If the program doesn’t finish to
completion, we can check whether a segmentation fault occurred by using the WTERMSIG status.

If the out-parameter status equals zero by a wait() call, that means the program finished as expected.

Environmental Variables

Environmental variables and shell variables are are dynamically-named values that customize en-
vironments. For example, one thing that we can do is change our prompt. Typing something like,
set prompt = "Hi: " would make Grace prompt Hi: prior to each command (which constrasts from
the default directory prompt).

From a C program, we can find the value associated with an environment variable using the getenv
function. This function has header char *getenv(const char *name). For instance, loc = getenv("HOME")
would store the path to our home directory in loc. The parameter name needs to be an environmental
variable.

Why would we need the getenv() function? Say we’re implementing the cd function in a shell. If we type
in cd by itself, we’re supposed to move to the home directory. How are we supposed to know where that is?

71

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

By using getenv("HOME"). Now, continuing with our implementation of cd, how would we change what the
program considers to be the home directory? We use a new function: chdir().

chdir(), short for “change directory,” has header int chdir(const char *path). This function returns
−1 upon failure. So, if we wanted to perform the Unix command cd ˜/temp, we could equivalently execute
chdir(˜/temp) in C.

Somewhat surprisingly, reproducing the cd command in a shell doesn’t require any forking. The exit
command doesn’t require any forking either.

Nested Processes

So far, we’ve seen how to produce a child process of a parent process with fork(). However, we’ve only seen
examples in which the child process is executing code from the same file as the parent process. We can do
this with the exelc() or exelcp() function.

Suppose we have the following evens.c program:

Listing 52: Evens

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

i n t main (i n t argc , char ∗∗ argv) {
5 i n t i , l im i t ;

/* Default of a 100; otherwise using command line
arg */

l im i t = (argc == 2 ? a t o i (argv [1]) : 100) ;
f o r (i = 1 ; i <= l im i t ; i++) {

10 i f (i % 2 == 0) {
p r i n t f (”%d ” , i) ;

}
}
p r i n t f (”\n”) ;

15

r e turn 0 ;
}

This program prints all even numbers up to whatever integer the user provides as a command-line
argument (or up to 100 if no argument is provided).

Now, consider the following driver program:

Listing 53: Exec Evens

#inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>

5 #inc lude <un i s td . h>
#inc lude <sys / types . h>

i n t main () {
p id t c h i l d p i d ;

10

i f ((c h i l d p i d = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r ”) ;

}
i f (c h i l d p i d != 0) { /* parent code */

15 i n t s t a tu s ;

72

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

wait(& s ta tu s) ; /* reaping and waiting for
child */

i f (WIFEXITED(s ta tu s) && WEXITSTATUS(s t a tu s) ==
0) {

p r i n t f (”Child has f i n i s h e d s u c c e s s f u l l y \n”) ;
20 }

} e l s e { /* child code */
p r i n t f (”PID %d (ch i l d) w i l l now execute

exec lp \n” , getp id ()) ;

/* I want to become the evens program */
25 exec lp (” . / evens ” , ” evens ” , NULL) ;

p r i n t f (”Would t h i s be ever pr in ted ?\n”) ;
e r r (EX OSERR, ” exec e r r o r ”) ; /* why no if

statement? */
}

30

r e turn 0 ;
}

Pretty much, the parent process just forks itself, and it waits for the child process to finish. Now, what’s
happening with the child process? We execute execlp("./evens", "evens", NULL), which loads the program
evens.c. Something important to know is that when we load in a program, the entire process “becomes” the
program we loaded in. Thus, the print statement on Line 27 is never printed (as it is not in the evens.c
program). When we execute exelcp, the stack and heap are all cleared. The only thing that is retained is
the set of files that were already opened by the original process.

If the program doesn’t exist, we’ll exit with the error code EX_OSERR. This error code never gets executed
if the exelcp is successful.

With fork, exec, and waiting, we’ve got everything we need to build our own shell. There are two types of
commands we need to handle:

• Unix commands: These usually don’t require forking.

• Shell commands: These are built-in to a shell; they typically involve forking. This includes cd, set, and
setenv.

The “main loop” used to implement a simple shell is as follows:

1. Read in a command line.

2. Parse the command line.

3. If it’s a shell command, process it directly.

4. If it’s a Unix command, fork, make the parent wait, and make the child execute the command.

73

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

22 Monday, July 15, 2019

Midterm II next week is on dynamic memory allocation, Linked Lists, and Makefiles. The exam won’t cover
Assembly or Process Controls.

Recall from last week that we can categorize commands in shell programs into two categories: those that
require forking and those that don’t. Typically, when we aren’t forking, we’re executing Unix commands
that have already been written for us (so we don’t need to actually program what the command should do –
that’s already been done for us).

Hiding Processes

In Unix, we can execute the ps command (short for “process status”), which will display a list of our active
processes. Two useful flags for this command are -f, which provides us with a “full-format listing” (it provides
some additional details) as well as -u, which displays the processes associated with our user. Finally, the -e
flag shows all active processes for every user (so if you run ps -ef on Grace, you can see what other users are
doing). The processes we create in C programs end up getting listed in here.

But what if we want our process to hide what it’s doing? We can create an alias for our process with the sec-
ond argument of the exelcp function. In last week’s example, we executed exelcp("./evens", "evens", NULL),
so this process would have been displayed with the alias “evens.” This can be changed to whatever we want.

The waitpid() System Call

Nelson says waitpid() is important to know for the final exam.

Recall that last week, we executed wait(NULL) to wait until a parent’s child finished execution. The
wait() command suspends execution of the calling process until any one of its children terminates. This can
be problematic. To see why this can be a problem, suppose we’re executing a parent process with two children
processes. Call the two children processes Process A and Process B. If we perform a simple wait(NULL) call,
our parent process will continue executing as soon as either Process A or Process B finish execution. Now,
what if the parent process is dependent on some task performed by Process B? We’d want to wait for Process
B to finish executing, but a simple wait(NULL) call might cause the parent process to move on with only
Process A completed.

The waitpid() function has header pid_t waitpid(pid_t pid, int *status, int options), and it
solves this problem. This function is used to suspend the execution of the calling process until a child specified
by the pid argument has finished executing. In the previously mentioned problem, we’d be able to fix our
issue by entering the PID of Process A into a waitpid() call. The status parameter acts as an out-parameter,
and the options parameter is a special number (defined as a macro), or it can alternatively just be 0.

Instead of inserting the PID into the first parameter of waitpid() function, if we instead input −1, we’ll
instead reap any process that has finished. This is a special case, and it allows us to recreate the wait()
function. More specifically, waitpid(-1, &status, 0) would perform the exact same thing as wait(&status).

Here is an example which uses the waitpid() function:

Listing 54: Deterministic Reaping

/**
* The parent will wait for each child, in
* the same order in which they were created.
*/

5 #inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>
#inc lude <s t d l i b . h>

74

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

#inc lude <e r r . h>
10 #inc lude <un i s td . h>

#inc lude <sys / types . h>
#inc lude <errno . h>

#de f i n e MAXCHILDREN 12
15

i n t main () {
p id t a l l p i d s [MAXCHILDREN] , c h i l d p i d ;
i n t idx , s t a tu s ;

20 /* Creating children processes */
p r i n t f (”\n∗∗∗∗ Forking p r o c e s s e s ∗∗∗∗\n”) ;
f o r (idx = 0 ; idx < MAXCHILDREN; idx++) {

i f ((a l l p i d s [idx] = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r whi l e c r e a t i n g

ch i l d r en ”) ;
25 }

i f (a l l p i d s [idx] == 0) { /* child code */
p r i n t f (”Child %d with pid %d created .\n” ,

idx , ge tp id ()) ;
s l e e p (rand () % 10) ; /* simulates task child

is completing */
e x i t (idx) ;

30 } e l s e { /* parent code */
p r i n t f (”Parent (pid %d) crea ted ch i l d %d .\n” ,

ge tp id () , idx) ;
}

}

35 p r i n t f (”\n∗∗∗∗ Reaping p r o c e s s e s ∗∗∗∗\n”) ;
idx = 0 ;
whi l e ((c h i l d p i d = waitp id (a l l p i d s [idx++],

&status , 0)) > 0) {
i f (WIFEXITED(s ta tu s)) {

p r i n t f (”Child (pid %d) f i n i s h e d (e x i t s t a tu s
%d) .\n” , ch i l d p id , WEXITSTATUS(s t a tu s)) ;

40 } e l s e {
p r i n t f (”Child (pid %d) terminated

abnormally .\n” , c h i l d p i d) ;
}

}
p r i n t f (”∗∗∗∗ Done reap ing p ro c e s s e s ∗∗∗∗\n\n”) ;

45

i f (e r rno != ECHILD) {
pe r ro r (”waitp id e r r o r ”) ;
e x i t (−1) ;

} e l s e { /* errno set to ECHILD when waitpid finds
no child to reap */

50 p r i n t f (”Reaping completed\n”) ;
e x i t (0) ;

}
}

On Line 17, we declare an array of PIDs so that we can keep track of the PIDs of every child we create.
This array is filled up in the loop between Lines 21 and 25 by forking several times. From here, if we’re a
child, we’ll print a statement, we’ll sleep for a random amount of time, and we’ll exit.

While these processes are executing, our parent process will be waiting on Line 37 to reap these processes.
Note that our waitpid call allows us to specify the PID of the process we’re reaping. In this case, we’re
reaping the processes in the order in which they are stored in the array. Since reaping a process acts like a
“block,” if every process except for the first one has finished, our program will be run inefficiently (we’ll be
stuck waiting for the first process to finish executing, which won’t necessarily be first). Thus, there are pros
and cons to this approach.

75

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

The while conditional on Line 37 stores the destroyed child process’s PID into the variable child_pid.
We then check whether this PID is positive (indicating success), and if it is, we’ll check whether the child was
reaped successfully or not. Finally, when there aren’t any more processes left to reap, the macro ECHILD is
returned by waitpid, and we make sure this is what was returned between Lines 46 and 51.

As a side-note, note that this code segment performs all of the forks followed by all of the reaps (this is in
contrast to performing one fork, one reap, another fork, another reap, etc). In fact, it is more efficient to do
it this way since it allows our computer to execute all of the processes in the most efficient manner.

In the above code segment, we reaped processes in the order in which they were created. That is, the
reaping process was deterministic in the sense that we knew what to expect of the order of the processes
being reaped. Next, we’ll consider a reaping process that is probabilistic in the sense that there will be
some randomization.

Here’s the corresponding code segment:

Listing 55: Probablistic Reaping

/*
* The parent will wait for each child, but
* the order in which the output will appear
* is non−deterministic.

5

* Reaping children in no particular order.
* pid = −1 parameter below defines wait set to
* be all parent’s processes. options = 0
* makes waitpid suspend execution of calling

10 * process until a child in wait set terminates
* pid != −1 defines the wait set to be the child
* process with the specified pid
*
* After all children have been reaped, next call to

15 * waitpid returns −1 and sets errno to ECHILD
*
* Initially try 2 as MAX_CHILDREN. To see output
* different order in reaping try 12 as MAX_CHILDREN
*

20 */

#inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>

25 #inc lude <s t d l i b . h>
#inc lude <e r r . h>
#inc lude <un i s td . h>
#inc lude <sys / types . h>
#inc lude <errno . h>

30

#de f i n e MAXCHILDREN 12

in t main () {
p id t ch i l d p id , pid ;

35 i n t idx , s t a tu s ;

/* Creating children processes */
p r i n t f (”\n∗∗∗∗ Forking p r o c e s s e s ∗∗∗∗\n”) ;
f o r (idx = 0 ; idx < MAXCHILDREN; idx++) {

40 i f ((pid = fo rk ()) < 0) {
e r r (EX OSERR, ” f o rk e r r o r whi l e c r e a t i n g

ch i l d r en ”) ;
}
i f (pid == 0) { /* child code */

p r i n t f (”Child %d with pid %d created .\n” ,
idx , ge tp id ()) ;

76

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

45 s l e e p (rand () % 10) ; /* simulates task child
is completing */

e x i t (idx) ;
} e l s e { /* parent code */

p r i n t f (”Parent (pid %d) crea ted ch i l d %d .\n” ,
ge tp id () , idx) ;

}
50 }

s l e e p (2) ; /* Giving children a chance to finish
printing created messages */

p r i n t f (”\n∗∗∗∗ Reaping p r o c e s s e s ∗∗∗∗\n”) ;
whi l e ((c h i l d p i d = waitp id (−1 , &status , 0)) > 0) {

/* notice −1 */
55 i f (WIFEXITED(s ta tu s)) {

p r i n t f (”Child (pid %d) f i n i s h e d (e x i t s t a tu s
%d) .\n” , ch i l d p id , WEXITSTATUS(s t a tu s)) ;

} e l s e {
p r i n t f (”Child (pid %d) terminated

abnormally .\n” , c h i l d p i d) ;
}

60 }
p r i n t f (”∗∗∗∗ Done reap ing p ro c e s s e s ∗∗∗∗\n\n”) ;

i f (e r rno != ECHILD) {
pe r ro r (”waitp id e r r o r ”) ;

65 e x i t (−1) ;
} e l s e { /* errno set to ECHILD when waitpid finds

no child to reap */
p r i n t f (”Reaping completed\n”) ;
e x i t (0) ;

}
70 }

What’s happening here? In the beginning of the code segment, we’re just creating 12 processes, and we’re
printing the PIDs of the children. Meanwhile, on Line 54, we’re reaping the children. However, note that
we’re now using −1 as the first parameter of our waitpid calls. So, we’re reaping any process that finishes
until we’re out of processes. Unlike the previous example, this example doesn’t enforce any ordering in the
reaping process. If we run the program many times, the order in which our processes are reaped will change.

Unix I/O

So far, we’ve covered Standard I/O, but there’s also Unix I/O. What’s are the differences?

• Standard I/O is built using Unix I/O (so we’re going backwards).

• Standard I/O is generally buffered, whereas Unix I/O doesn’t feature buffers.

• A file in Unix is just a sequence of bytes, and all I/O devices (e.g. keyboards, screens, and disks) are
modeled as files in Unix.

It seems like Unix I/O is older, worse, and harder to use than Standard I/O. So why are we using it?
Because Unix I/O permits us permits us to not only read and write from files but also to send data between
processes

Before we get started with Unix I/O, we need to learn about file management in Unix.

Each process has a file descriptor table which stores the set of files that the given process has open.
For example, when we use fopen(), an entry will be added to the file descriptor table. By default, each
process has three files listed in the file descriptor table: standard input, standard output, and standard error.

77

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Essentially, we can treat the file descriptor table as an array, and each entry in the table is a file. A file
can be opened more than once; if this is the case, there will be more than one entry with the same file.

So what does each entry in the file descriptor table store? First, there’s some general information, like
how far we are into the file (opening a file a second time would reset this entry). Information about a file
related to permissions, size, and type are stored in a table called the inode table.

There’s also an important piece of information, known as the reference count, which tells us how many
processes are associated with an entry.

When we call the fork() command, the entire file descriptor table is copied over. If we then use the child
process to execute a command, the address space gets modified; however, the file descriptor table does not
get modified. What does this mean for us? When we perform exec calls, the file descriptor table is preserved.

File Operations

There are four primary system calls associated with Unix I/O. Their headers are listed below:

1. int open(const char *filename, int flags) or int open(const char *filename, int flags, mode_t mode).

2. ssize_t read(int fd, void *buffer_size, size_tn.

3. ssize_t write(int fd, const void *buffer_size, size_t n).

4. int close(int fd).

A process can request access to a file using the open() system call. Upon success, the kernel returns a file
descriptor (an index in the file descriptor table). We can then modify the file using the read() and write()
functions. Once we’re finished, we can use the close() function to close the file.

Here’s an example:

Listing 56: Unix I/O Example 1

#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude < f c n t l . h>
#inc lude <s t d i o . h>

5 #inc lude <un i s td . h>
#inc lude <e r r . h>
#inc lude <s y s e x i t s . h>
#inc lude <s t r i n g . h>

10 /* same as 0666, but a bit more symbolic (we could use
#define DEF_MODE 0666)*/

#de f i n e DEFMODE (S IRUSR | S IWUSR | S IRGRP |
S IWGRP | S IROTH | S IWOTH)

in t main () {
i n t fd ;

15

fd = open (”message . txt ” , OWRONLY|OTRUNC |O CREAT,
DEFMODE) ;

i f (fd == −1) {
e r r (EX OSERR, ”can ’ t open message . txt ”) ;

} e l s e {
20 char msg [] = ”Hi the re ! ” ;

wr i t e (fd , msg , s t r l e n (msg)) ;
}

i f (c l o s e (fd) == −1) {
25 e r r (EX OSERR, ” c l o s i n g f i l e f a i l e d \n”) ;

78

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

} e l s e {
p r i n t f (” F i l e message . txt has been crea ted \n”) ;

}

30 r e turn 0 ;
}

First off, note that we use open() to open the file message.txt with various options that don’t concern
us right now. After the open() fuction is called on Line 16, the variable fd will be either −1 (upon failure) or
3 (upon success; this is the index directly after standard input, standard ouput, and standard error).

If opening the file succeeds, we’ll set the string msg to “Hi there!,” and we’ll use write() to write to the
file. Note the parameters here. The first parameter is the file descriptor, the second parameter is a pointer
to the data, and the last parameter is the number of bytes we’re requesting to write. Note that we don’t
actually need to have space for our null character—requiring space for a null character is a C construct, and
Unix does not follow the same constructs.

Finally, we close the file with the close() call to indicate we’re done processing our file. The close()
function returns −1 upon failure, so we need to make sure that worked as well.

Okay, so this is an example of writing to files. What about reading to files? This is captured below:

Listing 57: Unix I/O Example 2

#inc lude <s t d i o . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude < f c n t l . h>

5 #inc lude <un i s td . h>
#inc lude <e r r . h>
#inc lude <s y s e x i t s . h>

#de f i n e LENGTH 9
10

i n t main () {
i n t fd ;
char buf [LENGTH] ;
s i z e t byte s r ead ;

15

fd = open (”message . txt ” , ORDONLY) ;
i f (fd == −1) {

e r r (EX OSERR, ”Cannot open f i l e ”) ;
} e l s e {

20 i n t i ;
by te s r ead = read (fd , buf , LENGTH) ;
i f (byte s r ead != LENGTH) {

e r r (EX OSERR, ”Problem read ing data”) ;
}

25 f o r (i = 0 ; i < LENGTH; i++) {
p r i n t f (”%c” , buf [i]) ;

}
}

30 i f (c l o s e (fd) == −1) {
e r r (EX OSERR, ”Clos ing f i l e f a i l e d ”) ;

}

r e turn 0 ;
35 }

Like before, we’ll open the file and set the file descriptor to fd. The option specified in the last parameter
of open() specifies that we’re only allowed to read the file.

79

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Upon success, we’ll use the fact that read() returns the number of bytes read, and we’ll store that return
value into bytes_read (we just use this as a sanity check to make sure bytes_read == LENGTH holds). Again,
taking note of the parameters of read(), we see that the first parameter is the file descriptor, the second
parameter is a pointer to where we want to store the data, and the third parameter indicates the length of
what we want to read.

Subsequently, we check to make sure that we’ve read in the desired number of bytes. If so, we’ll print
what we read (note that we use the %c format specifier rather than the %s format specifier since there’s no
null character), and we’ll close the file.

We can use these Unix I/O commands to read standard input and standard output. How?

• Use 0 as our file descriptor for standard input.

• Use 1 as our file descriptor for standard output.

• Use 2 as our file descriptor for standard error.

This is demonstrated below:

Listing 58: Unix I/O Example 3

/*
Illustrates the file descriptors associated
with standard input (0), standard output (1).
Remember standard error is (2). To run the

5 example, enter a string with a length of at
least 5 characters.
*/

#inc lude <s t d i o . h>
#inc lude <un i s td . h>

10

#de f i n e LENGTH 5

in t main () {
char bu f f e r [LENGTH] ;

15

/* Use STDIN_FILENO instead of 0 */
read (0 , bu f f e r , LENGTH) ;

/* Use STDOUT_FILENO instead of 1 */
20 wr i t e (1 , bu f f e r , LENGTH) ;

wr i t e (STDOUT FILENO, ”Bye\n” , 4) ;

r e turn 0 ;
25 }

What are we doing? We read a string of up to length 5 from standard input, we write whatever we
inputted to standard output, and we also print “Bye.”

Although using 0 and 1 works for our file descriptors, we conventionally use the macros STDIN_FILENO
and STDOUT_FILENO.

80

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

23 Wednesday, July 17, 2019

Recall that each entry in the file descriptor table represents a file. Each entry has some general information,
like how far we are in the file, as well as the reference count (represents the number of processes associated
with the entry), and the inode, which contains some metadata about the file.

If we view the reference count of a single process, it’ll just be one. If we fork the process, the address space
and file descriptor table are duplicated; however, the reference count will be increased by one. Moreover, if
the child were to perform an exec call, the address space “becomes” the address space of the new program
(it gets overriden), but the file descriptor table will stay the same.

Unix I/O Redirection

The dup2() function allows us to perform input/output redirection.

Suppose we have opened a file data.txt, and we want to redirect its contents to standard input. We’d first
open the file so that data.txt would be stored in the third index of the file descriptor table (after standard
input, standard output, and standard error). Now, we can call the dup2 function, which has function header
int dup2(int oldfd, int newfd). For instance, if we were to write dup2(3, STDIN_FILENO), we’d be redi-
recting the contents of data.txt to standard input. Subsequently, if we call read(STDIN_FILENO, buffer, 8),
we’d be reading the first eight characters in standard input, which happens to be what we redirected from
data.txt.

In a similar manner, if we perform output redirection on standard output to a file, printing to standard
output would actually print to the file we being redirected to.

Here is an example:

Listing 59: Dup2 Example 1

/*
* Input/output redirection example
*
* Try 1: dup2Ex1

5 * input a string with 8 characters
*
* Try 2: dup2Ex1 data.txt
* in data.txt you need to have 8 characters
*

10 */

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <un i s td . h>

15 #inc lude < f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <e r r . h>
#inc lude <s y s e x i t s . h>

20 #de f i n e NAMELENGTH 8

in t main (i n t argc , char ∗∗ argv) {
char bu f f e r [NAMELENGTH] ; /* not including \0 */
i n t fd ;

25

i f (argc > 1) {
i f ((fd = open (argv [1] , O RDONLY)) < 0) {

e r r (EX OSERR, ” F i l e opening f a i l e d .\n”) ;
}

30 i f (dup2 (fd , STDIN FILENO) < 0) {
e r r (EX OSERR, ”dup2 e r r o r ”) ;

81

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

}
c l o s e (fd) ; /* we need it otherwise resource leak

*/
}

35

read (STDIN FILENO, bu f f e r , NAMELENGTH) ;
wr i t e (STDOUT FILENO, bu f f e r , NAMELENGTH) ;

e x i t (0) ;
40 }

What is this program doing? If we run it with command line arguments, we’ll open the specified file
and redirect its contents to standard input. We’ll then read from standard input and print its contents to
standard output.

Suppose we execute the program without any command line arguments. If we type in “Maryland,” the
program will simply print “Maryland” to standard output (due to Lines 36 and 37 in the program above).

Now suppose we specify the file data.txt, which has contents “Hello.” The dup2 function on Line 30 will
redirect standard input to map to the contents of our file. Thus, the read statement on Line 36 will read
from data.txt, and we’ll be writing the contents of data.txt to standard output (so the output is “Hello.”).

Here’s another example:

Listing 60: Dup2 Example 1

/*
* Input/output redirection example
*
* Try 1: dup2Ex2

5 * input a string with 8 characters
*
* Try 2: dup2Ex2 data.txt
* in data.txt you need to have a character

with 8 characters
*

10 * Try 3: dup2Ex2 data.txt output.txt
* output.txt will be overwritten with contents

of data.txt
*/

#inc lude <s t d i o . h>
15 #inc lude <s t d l i b . h>

#inc lude <un i s td . h>
#inc lude < f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>

20 #inc lude <sys / s t a t . h>
#inc lude <e r r . h>
#inc lude <s y s e x i t s . h>

#de f i n e NAMELENGTH 8
25

#de f i n e FILE PERMISSIONS 0666

i n t main (i n t argc , char ∗∗ argv) {
char bu f f e r [NAMELENGTH] ; /* not including \0 */

30 i n t fd ;

i f (argc > 1) {
/* If we have a second argument that represents

the input file */
i f ((fd = open (argv [1] , O RDONLY)) < 0) {

35 e r r (EX OSERR, ” F i l e opening (read) f a i l e d ”) ;

82

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

}

i f (dup2 (fd , STDIN FILENO) < 0) {
e r r (EX OSERR, ”dup2 (read) f a i l e d ”) ;

40 }

c l o s e (fd) ; /* Releasing resource */

/* If we have a third argument that represents
the output file */

45 i f (argc == 3) {
i f ((fd = open (argv [2] , OWRONLY | OCREAT |

OTRUNC, FILE PERMISSIONS)) < 0) {
e r r (EX OSERR, ” F i l e opening (wr i t e)

f a i l e d ”) ;
}

50 i f (dup2 (fd , STDOUT FILENO) < 0) {
e r r (EX OSERR, ”dup2 (wr i t e) f a i l e d ”) ;

}

c l o s e (fd) ; /* Releasing resource */
55 }

}

/* At this point we are ready for reading/writing */

60 read (STDIN FILENO, bu f f e r , NAMELENGTH) ;
wr i t e (STDOUT FILENO, bu f f e r , NAMELENGTH) ;

e x i t (0) ;
}

In this example, we can optionally provide command line arguments for input and output redirection. If
we provide one file name, we’ll direct its contents to standard input. If a second file is specified, we’ll redirect
its contents to standard output. Finally, we’ll read whatever standard input is pointing to, and we’ll write it
to wherever standard output is pointing to.

Also, note that we check whether the return value of dup2 is negative, which would indicate failure.

Here is one last dup2 example:

Listing 61: Dup2 Example 3

#inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>

5 #inc lude <un i s td . h>
#inc lude <sys / types . h>
#inc lude <s t r i n g . h>
#inc lude < f c n t l . h>

10 #de f i n e MAXLEN 80

void pr in t power s (i n t l im i t) {
i n t i = 0 ;

15 f o r (i = 0 ; i <= l im i t ; i++) {
p r i n t f (”%d\n” , i ∗ i) ;

}
}

20 i n t main () {

83

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

char f i l ename [MAXLEN + 1] = ” r e s u l t s . txt ” ;
i n t fd ;

i f ((fd = open (f i l ename , O CREAT | OWRONLY, 0666))
< 0) {

25 e r r (EX OSERR, ” F i l e opening f a i l e d \n”) ;
}
p r i n t f (”Resu l t s can be found at %s \n” , f i l ename) ;
dup2 (fd , STDOUT FILENO) ; /* redirecting */
c l o s e (fd) ; /* releasing resource

*/
30

pr int power s (10) ;

r e turn 0 ;
}

First, we’re opening a file called results.txt, and we’re redirecting standard output to point to the
contents of this file, and we release the file descriptor fd by closing it.

Finally, we call print_powers, which uses printf to print the first limit perfect squares. Since printf
defaults to printing to standard output, we’ll actually be printing to the file that we opened.

Introduction to Pipes

Most of our discussion on pipes will be done next class, but we’ll briefly introduce them today.

A pipe is used to combine two or more commands and use the output of one command to act as the
input to another command. Piping takes place in a left-to-right manner in Unix by separating targets with
the vertical bar |. Less formally, a pipe can be viewed as an area in which information can be exchanged.

As a basic example, suppose we have a program EngToSpa and SpaToFre, which are English-to-Spanish
and Spanish-to-French translators. Now suppose we want to translate the word, “dog” from English to French.
Instead of writing a new English-to-French translator, we can just utilize what we already have with piping.
Typing ./EngToSpa | ./SpaToFre in Unix and typing in “dog” would produce our desired result (it would
use the Spanish output and use it as the input for the second program).

But, this is a little bit inconvenient for the user. If we’ve got a lot of languages, the user’s going to need
to keep on typing vertical bars to try and find a short path to a language when a direct path might not
exist. The programmer can simplify the amount of work necessary on the user’s end by piping inside of a C
program.

In C, there’s a pipe() function which takes in an integer array of size two. The first entry in the array
needs to be the file descriptor for the read end of the pipe, whereas the second entry acts as the write end
of the pipe. If a process tries to read before anything is written to the pipe, the process is suspended until
something is written.

84

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

24 Friday, July 19, 2019

More on Pipes

Recall that the goal of piping is to exchange data between two processes. This is particularly helpful when
we’re exchanging data between a parent process and a child process. In particular, we can create a pipe
and fork the process so that the child gets the pipe as well. A pipe is completely determined by two file
descriptors: a read end, and a write end. When we call the pipe() function in C, we pass in an array whose
first entry is the read end and second entry is the write end.

Below is an illustrative example of how piping works:

Listing 62: Piping Example 1

#inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude <s y s e x i t s . h>
#inc lude <e r r . h>

5 #inc lude <un i s td . h>
#inc lude <sys / types . h>
#inc lude <s t r i n g . h>
#inc lude < f c n t l . h>

10 #de f i n e MAXLEN 80

void pr in t power s () {
i n t i = 0 , l im i t = 4 ;

15 f o r (i = 0 ; i <= l im i t ; i++) {
p r i n t f (”%d\n” , i ∗ i) ;

}
}

20 i n t main () {
p id t c h i l d p i d ;
i n t p i p e f d [2] ;
char f i l ename [MAXLEN + 1] ;

25 pipe (p i p e f d) ;
c h i l d p i d = fo rk () ;

i f (c h i l d p i d) { /* parent code */
c l o s e (p i p e f d [0]) ; /* closing pipe’s read end */

30 p r i n t f (”Enter f i l ename f o r r e s u l t s : ”) ;
s can f (”%s” , f i l ename) ; /* reading filename */
/* sending filename */
wr i t e (p i p e f d [1] , f i l ename , s t r l e n (f i l ename) +

1) ;
c l o s e (p i p e f d [1]) ; /* closing pipe’s write end

*/
35 wait (NULL) ; /* reaping */

} e l s e { /* child code */
i n t fd ;

c l o s e (p i p e f d [1]) ; /* closing pipe’s write end
*/

40 read (p i p e f d [0] , f i l ename , MAX LEN + 1) ; /*
reading file name */

c l o s e (p i p e f d [0]) ; /* closing pipe’s read end */
fd = open (f i l ename , O CREAT | OWRONLY, 0666) ;
dup2 (fd , STDOUT FILENO) ; /* redirecting */
c l o s e (fd) ; /* releasing resource */

45

85

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

pr int power s () ;
}

r e turn 0 ;
50 }

In this program, we’re forking the parent process, and we’re sending a file name to the child. Subsequently,
the child uses this file name as the destination for its processing (perfect squares up to 16). The pipe() call
on Line 25 is what initializes our pipe.

In the parent code, note that we’re closing the read end of the pipe. The reason why this is done is
because it’s sending data to the child (thus, the read end is not necessary). Subsequently, we prompt the user
for a file name, and we send it over to the child by using the pipe. Once we’re done sending it over with the
write() call, we’ll close the write end of the pipe, and we’ll wait for the child to reap.

From there, the child’s code executes. The child will be reading data, so it doesn’t have any use for the
write end of the pipe. Thus, the write end of the pipe is closed. Subsequently, it reads from the read end of
the pipe and closes it. It can now process with the file name provided.

Here’s an example that combines dup2 and pipe calls.

Listing 63: Piping Example 2

#inc lude <s t d i o . h>
#inc lude <sys /wait . h>
#inc lude < f c n t l . h>
#inc lude <un i s td . h>

5 #inc lude <e r r . h>
#inc lude <s y s e x i t s . h>

#de f i n e MAX STR LEN 80

10 i n t main () {
i n t p i p e f d [2] ;
p i d t c h i l d p i d ;
char va lue [MAX STR LEN + 1] ;

15 p r i n t f (”Enter number : ”) ;
f g e t s (value , MAX STR LEN + 1 , s td in) ;

i f (p ipe (p i p e f d) < 0) { e r r (EX OSERR, ” pipe
e r r o r ”) ; }

i f ((c h i l d p i d = fo rk ()) < 0) { e r r (EX OSERR, ” f o rk
e r r o r ”) ; }

20

i f (c h i l d p i d) { /* parent code */
c l o s e (p i p e f d [0]) ; /* closing read end */
wr i t e (p i p e f d [1] , value , MAX STR LEN + 1) ; /*

placing data in pipe */
c l o s e (p i p e f d [1]) ; /* closing write end */

25 wait (NULL) ; /* reaping */
} e l s e { /* child code */

c l o s e (p i p e f d [1]) ; /* closing write end */

i f (dup2 (p i p e f d [0] , STDIN FILENO) < 0) {
e r r (EX OSERR, ”dup2 e r r o r ”) ; }

30 c l o s e (p i p e f d [0]) ;
exec lp (” . / t ab l e ” , ” t ab l e ” , NULL) ;
e r r (EX OSERR, ” exec e r r o r ”) ;

}

35 r e turn 0 ;
}

86

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

This is similar to the previous example. Pretty much, we’re reading a number into value, we’re creating
a pipe, and we’re forking. The parent closes the read end of the pipe (it has nothing to read!), writes the
inputted value to the write end of the pipe (for the child), and closes the write end of the pipe. It then waits
for the child to finish execution.

The child closes the write end of the pipe (it has nothing to write), and it maps its standard input to read
from the read end from the pipe. Consequently, it closes the read end of the pipe (this is allowed because
we’ve already mapped our standard input), and the child executes the program “table.” Now, if the program
“table” takes in a value from standard input, it will instead read the value that was put into the pipe.

At this point, we should be able to implement an EngToFre program that uses piping with the outputs of
EngToSpa and SpaToFre (create a pipe and two children; the first child represents EngToSpa, and the second
child represents SpaToFre).

Introduction to Concurrency

Concurrency is the ability to use different parts of a program in an out-of-order sequence without affecting
the final desired result. A thread is a lightweight process that specifies an execution sequence in a process.
We’ve already briefly introduced threads—recall that the minimal representation of a thread is a stack and
a program counter. By quickly switching between threads, we can make it seem as if different execution
sequences are executing at the same time. An example of how threads might be used is a GUI displaying
clocks in different timezones.

If we have multiple threads, there are some things that they share. In particular, threads share heap
memory, global/static memory, open files, shared libraries, and virtual addresses.

How do we use threads in C? With the pthread.h library.

This library includes a data type called pthread_t, which allows us to represent thread IDs. There’s also
a built-in pthread_create function which is used to initialize (but not start) a thread’s process. Finally,
there’s a pthread_join function which allows the thread to begin executing.

Here is a basic example:

Listing 64: Threads Example 1

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <pthread . h>
#inc lude <un i s td . h>

5

s t r u c t po int {
i n t x , y ;

} ;

10 void ∗ p r i n t p o i n t (void ∗pointp) ;

i n t main () {
pthread t t i d ; /* thread id */
s t r u c t po int pt = {3 , 5} ;

15

i f (p th r ead c r ea t e (&tid , NULL, p r i n t po in t , &pt) !=
0) {

f p r i n t f (s tde r r , ” p th r ead c r ea t e f a i l e d \n”) ;
e x i t (1) ;

}
20

/* reaps thread blocking until thread terminates */
p r i n t f (”Waiting f o r ch i l d to f i n i s h \n”) ;
i f (p th r ead j o i n (t id , NULL) != 0) {

f p r i n t f (s tde r r , ” p th r ead j o i n f a i l e d \n”) ;

87

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

25 }

p r i n t f (” In main a f t e r thread f i n i s h e d \n”) ;

r e turn 0 ;
30 }

/* code executed by the thread */
void ∗ p r i n t p o i n t (void ∗pointp) {

s t r u c t po int arg = ∗(s t r u c t po int ∗) pointp ;
35

s l e e p (2) ; /* simulating some work */
p r i n t f (”Point : (%d , %d) \n” , arg . x , arg . y) ;

r e turn NULL;
40 }

In the above example, we’ve declared a thread called tid. This is initialized with the pthread_create
function, where the thread ID is passed in as an out parameter. In this class, we’ll always have the second
argument of pthread_create equal to NULL (the second argument allows us to use custom initializations).
Subsequently, the third parameter of pthread_create specifies what the task the thread should be executing
(here, it’s the function print_point), and it is followed by any parameters that the function might need.

The function prototype of the task that a thread is performing will always return a void pointer, and it
will always take in a void pointer. This function header cannot change.

In our program, if this initialization succeeds, we’ll use the pthread_join() function (again, in our class,
the second parameter will always be NULL). This function will tell the thread to finish executing. Finally,
we’ll print the printf statement on Line 27.

We’ll continue with concurrency next class.

88

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

25 Monday, July 22, 2019

Retrieving Values from Threads

Last time, we saw how we can initialize a thread and make it perform a task. But, what if the thread
computes some important value and we want to retrieve it?

Here is an example:

Listing 65: Retrieving Values

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <pthread . h>

5 void ∗ ge t squa r e (void ∗ args) ;

i n t main () {
pthread t t i d ;
void ∗ r e s u l t p t r = NULL;

10 i n t argument ;

p r i n t f (” Input value to compute square : ”) ;
s can f (”%d” , &argument) ;

15 pthr ead c r ea t e (&tid , NULL, get square , &argument) ;
p th r ead j o i n (t id , &r e s u l t p t r) ; /* notice use of &

*/
p r i n t f (”Square o f %d i s %d \n” , argument , ∗(i n t

∗) r e s u l t p t r) ;

f r e e (r e s u l t p t r) ;
20

r e turn 0 ;
}

void ∗ ge t squa r e (void ∗ args) {
25 i n t argument = ∗(i n t ∗) args ;

i n t ∗ answer ptr = mal loc (s i z e o f (i n t)) ;

∗ answer ptr = argument ∗ argument ;

30 r e turn answer ptr ;
}

Like we mentioned last class, the function that specifies the task that the thread will be performing will
always have the same function header: it always takes in a void pointer, and it will always return a void
pointer.

If the thread’s function always takes in a pointer, how do we perform tasks that require more than one
parameter? This is solved by declaring a pointer to a structure, where the structure contains all of the
necessary fields. This is exactly what we’ve done in the above example.

On Line 8, we’ve defined a thread that will be used to perform the get_square task. The pthread_create()
call on Line 15 initializes tid, and it also specifies the task that the thread will be computing. Moreover, as
we mentioned last class, the second argument of the function will always be NULL. Finally, the last parameter
specifies the parameter of the function we’re initializing the thread to.

Now, the pthread_join() function will tell the program to execute the task that the thread was assigned.
If we want to keep the value that the function is returning, we need to allocate memory and return that
value. Now, how do we retrieve the value? We pass an out-parameter when we’re calling the pthread_join()

89

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

function (in this case, result_ptr acts as our out-parameter). Thus, after Line 16, result_ptr will store the
returned value. The caller is responsible for freeing the dynamically allocated memory.

When we’re creating multiple threads, it’s good practice to create all of the threads at first and join them
all afterwards (rather than creating one, joining it, creating another, joining it). Why? Because otherwise,
we’d be executing our program sequentially, which doesn’t actually use concurrency.

Here is an example which uses more than one thread:

Listing 66: Multiple Threads

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <pthread . h>
#inc lude <time . h>

5 #inc lude <un i s td . h>

#de f i n e THREADCT 8

void ∗ p r i n t s t u f f (void ∗ptr) {
10 i n t k , id = ∗(i n t ∗) ptr ;

f o r (k = 0 ; k <= 4 ; k++) {
p r i n t f (”Thread %d , ” , id) ;
f f l u s h (stdout) ;

15 p r i n t f (” loop %d\n” , k) ;
f f l u s h (stdout) ;
s l e e p (rand () % 2) ; /* sleep 0 or 1 seconds */

}
p r i n t f (”Thread %d ex i t i n g \n” , id) ;

20

r e turn NULL;
}

i n t main () {
25 pthread t t i d s [THREADCT + 1] ;

i n t i , i d s [THREADCT + 1] ;

f o r (i = 1 ; i <= THREADCT; i++) {
i d s [i] = i ;

30 pthr ead c r ea t e (& t i d s [i] , NULL, p r i n t s t u f f ,
&id s [i]) ;

p r i n t f (”Thread 0 crea ted thread %d\n” , i) ;
}

f o r (i = 1 ; i <= THREADCT; i++) {
35 pth r ead j o i n (t i d s [i] , NULL) ;

p r i n t f (”Thread 0 reaped thread %d\n” , i) ;
}

r e turn 0 ;
40 }

In our main, we create THREAD_CT threads, and we keep track of each of their IDs in our array tids. The
second loop between Lines 34 and 37 will print some details about the thread, and we’ll finally terminate the
program.

Note that when we’re creating the threads, we use &id[i] as the last parameter of pthreads_create()
rather than &i. Why? Because if we were to use &i as the parameter to print_stuff, there would be a data
race. Since i is changing inside of the loop and multiple threads depend on this same variable, we’ll have
unexpected output. The solution is to make sure that each variable has its own in-parameter.

90

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Locks, Mutexes, and Semaphores

Suppose we want to use multiple threads to compute one value (such as the maximum in an array). The
variable that would store the array maximum would need to be “shared” among all of the threads. That is, all
of the threads should be able to modify the array with a new maximum it finds. However, it’s important to
make sure that only one thread accesses the shared variable at once — otherwise, we might have a data race.
In general, when one thread is accessing common variable, no other thread should be accessing
it.

Here’s another example in which locks might be important. Consider the following code segment:

Listing 67: Accessing Critical Section without Synchronization

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

#de f i n e LOOPS 10000000
5

s t a t i c i n t count = 0 ;

void ∗ counter (void ∗ args) {
i n t i ;

10

f o r (i = 0 ; i < LOOPS; i++) {
count++;

}
p r i n t f (”Executed %d times \n” , i) ;

15

r e turn NULL;
}

i n t main () {
20 pthread t t i d s [2] ;

p th r ead c r ea t e (& t i d s [0] , NULL, counter , NULL) ;
p th r ead c r ea t e (& t i d s [1] , NULL, counter , NULL) ;
p th r ead j o i n (t i d s [0] , NULL) ;

25 pth r ead j o i n (t i d s [1] , NULL) ;
p r i n t f (”Count : %d\n” , count) ;

r e turn 0 ;
}

This program creates two threads, each of which execute the function counter. The function counter
increments the global variable count ten million times. Finally, we print out the value of count. While one
might expect count to have a value of 20, 000, 000, it turns out that this is not the case. Each time we run the
program, we should expect to get a quantity between 10, 000, 000 and 20, 000, 000. Like the array maximum
problem described, this discrepancy is caused by a data race.

How do we control the threads’ access to a variable? With locks, mutexes, semaphores. First, we’ll
distinguish between the three:

1. A lock only permits one thread to access data that is locked. This lock is not shared with any other
processes.

2. A mutex3 is just like a lock; however, it can be shared by multiple processes.

3. A semaphore is a same as a mutex; however, it permits a predefined number of threads to access the
shared data space.

3Short for mutual exclusion

91

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Also, the data section that only one active thread should be accessing at once (in our example, this would
be the count variable) is formally known as the critical section.

How do we use these in C? Let’s first look at the code segment that solves our count issue:

Listing 68: Accessing Critical Section with Synchronization

#inc lude <pthread . h>
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

5 #de f i n e LOOPS 10000000

s t a t i c i n t count = 0 ;
s t a t i c pthread mutex t mutex ;

10 void ∗ counter (void ∗ args) {
i n t i ;

f o r (i = 0 ; i < LOOPS; i++) {
pthread mutex lock(&mutex) ;

15 count++;
pthread mutex unlock(&mutex) ;

}
p r i n t f (”Executed %d times \n” , i) ;

20 r e turn NULL;
}

i n t main () {
pthread t t i d s [2] ;

25

pthread mutex in i t (&mutex , NULL) ;

p th r ead c r ea t e (& t i d s [0] , NULL, counter , NULL) ;
p th r ead c r ea t e (& t i d s [1] , NULL, counter , NULL) ;

30 pth r ead j o i n (t i d s [0] , NULL) ;
p th r ead j o i n (t i d s [1] , NULL) ;
p r i n t f (”Count : %d\n” , count) ;

pthread mutex destroy(&mutex) ;
35

r e turn 0 ;
}

Here, we see that there’s a data type called pthread_mutex_t. This is used to declare mutexes (mutexes
sounds strange – maybe mutices? mutexi? mutii?).

How do we use this mutex? Whenever we’re going to access the critical section, we’ll need to acquire
the lock by using the pthread_mutex_lock() function. Once we’re done accessing the critical section, we’ll
let go of the lock with the pthread_mutex_lock() function. Both of these functions take in a pointer to a
pthread_mutex_t type (which makes sense – the functions would need to modify this type to signal that the
critical section shouldn’t be accessed).

When one thread has acquired the lock, no other thread can access the critical section. More specifically,
suppose two threads are trying to modify count at the same time. One thread will execute Line 14 before the
other (and thus acquire the lock). When the second thread gets to Line 14, it’ll realize that the lock has
already been acquired. This thread will now be forced to wait until the first thread has finished accessing the
critical section (which occurs after Line 16 is executed).

The con of synchronizing our code with mutexes, locks, and semaphores is time efficiency. This code
segment runs slower than the previous (incorrect) code segment. One reason why might be that one thread
needs to wait for the other before it can perform its task.

92

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

System and Unix Time

There are many different ways to measure time on a computer, a couple of which are described below:

1. Wall time (also known as “elapsed real time”) is the actual time taken from the start of a computer
program to the end. Internally, it’s calculated by subtracting the ending time of a program by the
starting time of a program.

2. Process time is the time your program was running without accounting for the time the program
stopped for other programs or the time the program needed to wait for I/O.

Process time can further be divided into two categories: user time, which represents the amount of time
the operating system is running your code, and kernel time, which represents the time the operating system
is running system code (i.e. when we’re handling system calls, like fork()).

We can obtain measurements on how long a program takes to execute using the time command in Unix.
The general syntax for this command is time [executable].

As an example, consider the following code:

Listing 69: Time Example

#inc lude <s t d i o . h>
#inc lude <time . h>
#inc lude <un i s td . h>
#inc lude <s t d l i b . h>

5

/*
* Execute "time sleeper"
*/
i n t main () {

10 long x = 900000000;

whi l e (x−− > 0) ;
p r i n t f (”About to s l e e p f o r 5 seconds \n”) ;
s l e e p (5) ;

15 p r i n t f (”Done\n”) ;

r e turn 0 ;
}

If we were to compile the file and place an executable with the name “sleeper” in our directory, typing
time sleeper would produce a result similar to what follows below:

1.844u 0.001s 0.06.85 [other information]

The first entry, 1.844 denotes the user time in seconds. The second entry, 0.001 denotes the kernel time
in seconds. The third entry, 0.06.85, denotes the wall time in seconds. This output is kind of expected since
we have a sleep() call in our function, which does nothing for five seconds.

Date and Time Functions

93

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

26 Friday, July 26, 2019

Today, we’re wrapping up multithreading.

Thread Safety

Recall that when we have multiple threads, we need to make sure our code is thread safe. As we’ve already
seen, two threads attempting to modify a shared variable can lead to data races.

Here’s another example of a function that threads might use, which would be considered unsafe:

Listing 70: Thread Unsafe Function

char ∗ i t o a (i n t n) {
s t a t i c char bu f f e r [5 0] ;
s p r i n t f (bu f f e r , ”%d” , n) ;
r e turn bu f f e r ;

5 }

Why is this thread unsafe? Suppose two threads are using this same function. When the first thread
calls the function with an integer, we’ll store the string-equivalent of that integer into buffer. The function
returns a pointer to the buffer (note that this is actually fine since the buffer variable is static). Now if a
second thread calls this same function, it’ll modify the same memory address, which means that the first
thread and second threads would both be pointing to the second result.

How do we solve this issue? We can protect calls to this function with a binary semaphore and make
deep copies before allowing other threads to access the function. Alternatively, we can use out-parameters to
initialize the return value.

A function that can be interrupted and resumed at a later time without hampering its earlier course of
action is said to be reentrant. There are some conditions that a function must satisfy to be reentrant, like
not using any global or static data. Also, a reentrant function cannot call another non-reentrant function.

Every reentrant function is thread safe; however, not every thread safe function is reentrant. As an
example, the itoa function could be modified to include locks. In that case, itoa still wouldn’t be reentrant
(it has a static variable!), but it would be thread safe.

Libraries

A library is a collection of object files that provide compiled functions to perform some related task. Libraries
are linked into programs either prior to execution or during program execution.

There are a few options that we have when we’re sharing code:

• We can give out the source code. This gives the client access to everything you wrote. The downside is
that it needs to be recompiled and re-linked by every user, and it also exposes implementation details.

• We can give out the object code. This won’t require recompilation of the object code; however, it’ll
require re-linking of the application that’ll be using it.

Surprisingly, giving out libraries is even easier than both of these options. Giving out libraries doesn’t
even require re-linking of the application using it.

Another benefit of using libraries is that they only include what is being used into the executable. For
instance, if a library contains hundreds of functions, but we only use one, the library will only compile the

94

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

ones that are being used. The linker has to search through an object file and find each function being used.
However, this process can be sped up with indexing.

The nm Unix command has general syntax nm [.o file], and it returns a list of functions and other
symbols being used in the compiled object code. This is helpful because it looks only at machine code rather
than C code.

The primary types of libraries are summarized below:

1. An archive library is linked into a program as a part of the linking phase of compilation. It requires
space in each executable that uses them, and a benefit of using them is their ease of use. These types
of libraries consist of only one .a file (similar to a .zip file), where everything is stored.

2. A shared library allows different executables to share the same library code, ultimately saving disk
and memory space. Shared object files have the file extension .so. These typically function more
efficiently than archive libraries.They are linked either at program startup or during execution, and only
one copy is needed for the entire system. Using command line, we can use the ldd command, which has
syntax ldd [executable file], to tell us which shared libraries an executable file depends on.

The ln command in Unix can be used with the flag -s to to create symbolic links between two or more
files. The general syntax is ln -s [file_name] [link_name].

What are links used for? Essentially, they’re used to redirect one file to another piece of data that already
exists. This can help us save space when we’re copying files to other locations in memory. Say we have a
file called file1.txt that has the contents “File 1.” We can now create a new file called file2.txt, and
executing ln -s file1.txt file2.txt will make File 2 “point” to the contents of File 1. Thus, if we were to
execute cat file2.txt, we’d see “File 1” as output.

Symbolic linking can also be done with other types of files, including directories.

95

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

27 Monday, July 29, 2019

Dynamically-loaded Libraries

Last class, we introduced two types of libraries: shared libraries and static (or archive) libraries. A
dynamically-loaded library is a different way to use a shared library; however, it is NOT a new type of
library.

Functions in dynamically loaded libraries can be loaded into an application during runtime, not just at
program startup4. Dynamically loading a library requires more work for the programmer; however, it makes
the program more convenient for the user.

It’s important to remember that static libraries cannot be dynamically loaded.

If static libraries requires space in every executable AND cannot be dynamically loaded, why do we even
use them? First, static libraries allow for a quicker startup of the program since we don’t need to load the
functions needed at runtime. Essentially, it permits us to “pay” a price (in time) at compile time for a faster
startup at runtime.

Nelson says that we should be able to name the two types of libraries and list their advantages/disadvantages
for the final exam.

Introduction to Optimization

In machine code, not all instructions take the same amount of type. A classical example of this is dividing
integers versus floating point numbers—dividing an integer quantity by a constant is significantly faster (by
a factor between 5 to 10) than dividing a floating point number. There are other optimizations that the
compiler automatically performs. It’s helpful to understand what compilers can and can’t do, as well as the
time it takes on the hardware.

First off, processors use caching, which is a method of keeping copies of recently accessed memory
locations in fast storage. Consequently, future requests for that data are served up faster than is possible
by accessing the data’s primary storage location. Efficiency is maximized if the same cache items are used
multiple times. Two principles of locality used by computer architecture when performing caching are listed
below:

1. One of the two principles is based on temporal locality. This principle states that recently referenced
items are likely to be referenced again in the near future.

2. The second principle is based on spatial locality. This principle states that items with nearby
addresses tend to be referenced close together in time (like items in an array).

Next, processors perform pipelining, which allow parts of multiple instructions to execute simultaneously.
For example, the processor might start to decode one instruction while loading the next one from memory.
Some superscalar processors can execute two or more instructions at once. Pipelining can further be optimized
with branch prediction, which is a process by which the processor guesses which way a branch (e.g. a
conditional statement) will go, ultimately allowing the pipeline to stay full.

When conducting efficiency measurements, typically we’ll run the program a set number of times and
take the mean of the K fastest runs.When conducting these tests, it’s important to have representative input
samples. Why? Because some inefficient algorithms, like one that runs in O(n2), might appear to be efficient
for small values of n.

What are the sources of performance problems? There are a lot of reasons why some code might be
inefficient. The following list names a few:

4This is how browsers allow for skins, plug-ins, etc

96

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

1. I/O Operations that are too small. (e.g. it is inefficient to read a file one character at a time; it is much
faster to read entire strings or lines at once).

2. Poor algorithm implementations. Using an O(n2) (or worse) algorithm is bad when n is large.

3. Caching memory that isn’t reused.

Optimization is not about algorithms but rather how to convert algorithms into efficient code and how to
refine code to make it run faster.

Compilers can be told to “optimize” your code. In gcc, the -O flag enables the optimizer, which makes
modifications to the compiled program wherever possible. Optimization will never break your code; the
actions taken by enabling the -O flag will only be safe changes. However, optimizing code might reveal latent
bugs. Naturally, there are some limits on compiler optimization. The compiler has a limited understanding
of the program, and there is a need to compile programs quickly.

Types of Optimizations

There are a few types techniques that compilers use to optimize code. Here, we’ll discuss a few.

Code Motion

The following example demonstrates one way in which the compiler can optimize a code segment.

First, consider the original, pre-optimized code segment:

Listing 71: Unoptimized Compiler Code

i n t i , j , k ;
. . . .
f o r (i = 0 ; i < 200 ; i++) {

a [2 ∗ i ∗ j] = j ∗ k + i ;
5 }

Now here’s the compiler optimized equivalent:

Listing 72: Optimized Compiler Code

i n t i , j , k ;
. . . .
i n t prod 2j , p rod jk ;
p rod 2 j = 2 ∗ j ;

5 prod jk = j ∗ k ;
f o r (i = 0 ; i < 200 ; i++) {

a [prod 2 j + i] = prod jk + i ;
}

Why is this faster? In the original code, it’s unnecessary to repeatedly multiply j and k since they’re
constant values. Likewise, it’s unnecessary to keep on multiplying 2 and j. It’s also important to remember
that the compiler automatically does this for us. This second code segment is just showing how the
compiler could potentially be interpreting this code.

This type of optimization (e.g. using variables to store repeatedly used constant values) is known as code
motion. Another good example is here5.

5https://stackoverflow.com/questions/5607762/what-does-code-motion-mean-for-loop-invariant-code-motion

97

https://stackoverflow.com/questions/5607762/what-does-code-motion-mean-for-loop-invariant-code-motion

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Loop Unrolling

Loop unrolling is a type of processor optimization which allows for the contents of a loop body to be
executed faster.

Here’s an unoptimized code segment:

Listing 73: Unoptimized Compiler Code

/* Assuming n is even. */
f o r (i = 0 ; i < n ; i++) {

c [i] = a [i] + b [i] ;
}

A post-optimized equivalent might look something like this:

Listing 74: Optimized Compiler Code

f o r (i = 0 ; i < n − 1 ; i += 2) {
c [i] = a [i] + b [i] ;
c [i + 1] = a [i + 1] + b [i + 1] ;

}

We’ve “unrolled” the loop and now we only perform half the number of iterations. Why is this faster
than the unoptimized segment? Because, as previously mentioned, modern processors can perform several
parts of instructions simultaneously.

Dead Code Elimination and Other

This is really simple, so there’s no example. Pretty much, the compiler will eliminate chunks of code that
never get executed. So, if we added had something like, if (false) { }, the compiler wouldn’t
need to look at that. This is called dead code elimination.

We should also attempt to reduce the number of function calls we have since it takes time. This can be
done by eliminating short functions (like, one line functions), and replacing them with parametrized macros
(#DEFINE) or inline functions (with the inline keyword in C), which are used to tell the compiler that the
function is a short one.

Amdahl’s Law

Amdahl’s Law is a formula which gives the theoretical speedup of a task that can be expected of a system
whose resources are improved.

Let T denote the execution time of a program. Now suppose we have a function that takes α fraction (so
we have 0 ≤ α ≤ 1) of the program execution time, and we can make this function k times faster. Then, the
following equality holds:

Tnew = (1− α)Told + (αTold)/k.

To get a better understanding of what this equation is saying, let’s look at the edge cases:

• If we have a function that occupies the entire runtime of a program (that is, α = 1), then we’ll simply
have Tnew = Told/k, which makes sense if we’re making the function k times faster.

• If we have a function that occupies none of the runtime of a program (that is, α = 0), then we’ll have
Tnew = Told since making the function faster won’t do anything if our program never executes it.

98

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

28 Wednesday, July 31, 2019

Recall that two-dimensional arrays in C are layed out in row-major order. Thus, it’s more efficient to process
a 2D array row-by-row (instead of column-by-column) in order to efficiently use the cache.

Memoization

Another optimization technique is to store intermediate values in computationally difficult tasks. This is
known as memoization. The classical example is computing Fibonacci numbers using DP:

Listing 75: DP Fibonacci

#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>

unsigned long f i b (unsigned i n t n) {
5 s t a t i c unsigned i n t t ab l e [1 0 0] = {0} ;

i f (n == 0 | | n == 1) {
r e turn 1 ;

}
i f (t ab l e [n]) {

10 r e turn tab l e [n] ;
}
r e turn tab l e [n] = f i b (n − 1) + f i b (n − 2) ;

}

Without memoization, a recursive Fibonacci function runs in O(φn), which is really bad. To do better,
once we’ve computed a Fibonacci number, the number is stored for later use in the static array table. Since
the variable is static, the variable will be shared with subsequent function calls. This reduces the number of
recursive calls made when we use the function a lot.

Parametrized Macros

We’ve already seen that we can use #define to blindly substitute text in one place to another. However,
#define can also be used to create parametrized macros where parameters are substituted along with the
text substitution.

The general syntax for a parametrized macro is #define(parameter-list) text.

As an example, consider the macro #define SUM(a, b) a + b. We could then write something like
x = SUM(2, 6), and it would blindly substitute this text to become x = 2 + 6. Long parametrized macros
can be extended to a new line using a backslash.

It is important to be careful with parametrized macros since they are essentially just substituting text.
In particular, we need to pay attention to the precedence of operators as well as issues with post and
pre-incrementation.

Let’s look at an example in which a parametrized macro might fail to do what we want it to do:

The macro #define SQUARE1(x) x * x will fail when we call the macro with SQUARE1(5 + 1). While
we might want the answer to be 36, the preprocessor will instead perform a blind substitution, and we will
compute 5+1·5+1 = 11. The solution is to change the parametrized macro to #define SQUARE2(x) (x) * (x).

Below are a few important things to remember about parametrized macros:

1. Macros are textually replaced. Consequently, they are much faster than function calls, which have
overhead.

99

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

2. Macros cannot be recursive.

3. Macros cannot be type-checked by the preprocessor.

4. Macros might result in difficult bugs.

Virtual Memory

A computer has virtual memory and physical memory which are of importance when writing code.
Virtual memory can be thought of as our entire memory space, which ultimately gives the programmer an
illusion of having infinite memory. On the other hand, the physical memory space contains memory addresses
that are actively being used.

For instance, a programmer is using data (i.e. creating a variable), parts of the virtual memory is mapped
to physical memory, where the data is stored. For this reason, virtual memory is typically larger than physical
memory.

These concepts of physical and virtual memory explain why when we call fork() on a program in C, the
memory addresses of the child and parent processes are initially the same. The reason why is that the child
has not been mapped to a physical memory address space yet.

Signals

Nelson says that we don’t need to write code with signals on the final, but we need to understand signals
conceptually.

A signal is a method of communication between two or more processes. There are many ways to send
signals, some of which are listed below:

• We can send signals via the keyboard. The CTRL + C and CTRL + Z send the SIGINT (terminate process)
and SIGTSTP (suspend process execution) signals, respectively.

• The kill command in Unix can be used to send signal to a process to terminate it.

• Software errors can also produce signals. For example, if we get a segmentation fault, a SIGSEGV signal
is sent in order to indicate a segmentation violation.

• The SIGCHLD signal is sent to a parent process when the child process terminates.

100

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

29 Friday, August 2, 2019

Today is the last day of new content. After this, we’ll just be reviewing for the final.

Back to Assembly

Recall that in Assembly, we use registers to pass and return values to and from a function. But, what if we
have enough arguments to make us run out of registers? Likewise, recall that we use registers to keep track
of local variables. What happens if we exhaust all of the registers, and we still want to store more variables?

In either of these scenarios, the solution is to use the stack. We can use the stack to hold arguments and
local variables.

A stack frame is an area of memory in the stack that supports the execution of a function. If the
function were recursive, each subsequent call to the function would

AVR Stack Frame

In AVR Assembly, we can define the Y register pointer to act as our frame pointer. We will be able to access
local variables relative to this pointer. The following image depicts this scenario:

As depicted above, we can find our first local variable at the Y + 1 (we get here by adding one byte to the
Y register pointer), another local variable at Y + 2, and so on.

Okay, but how can we access these values? We’ve already seen that we can use adiw to increment a
register pair. Since the Y register pointer resides in the register pair r29:r28, we could just perform the
correct number of adiw operations on r28. But this is really slow — what if our stack is really big? The
solution is to use the ldd instruction.

The ldd instruction has general syntax ldd [register], [register pointer] + q, where register pointer
is either Y or X (we can’t use ldd on the X register pointer), and q is some constant integer value. What does
this instruction do? It loads the contents of Y + q into the specified register.

We can now look at an example of an Assembly program that uses the ldd example. For simplicity, let’s
look at the equivalent C code first:

101

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

Listing 76: C Program for Sum of Squares

i n t sum sys (i n t a , i n t b) {
i n t sum1 = a ∗ a ;
i n t sum2 = b ∗ b ;
re turn sum1 + sum2 ;

5 }

Essentially, we’re going to be computing two squares separately, and we’ll return their sum. Now here’s
the corresponding Assembly code:

Listing 77: Assembly: Factorial

;;; Example − A function that uses the stack to pass
parameters

;;; and defines local variables in the stack.
;;; Program implements sum_sqrs(a, b) = a * a + b * b

5 . s e t SPH, 0x3e ; stack pointer (high
byte)

. s e t SPL , 0x3d ; stack pointer (low
byte)

;;; Global data
. da ta

10

pctd : . a s c i z ”%d ”
a : . by t e 3
b : .by t e 4

15 ;;; Program code
. t e x t

. g l o b a l main
main :

20 ;; calls sum_sqrs(3, 4), printing 25 as result
c a l l i n i t s e r i a l s t d i o

l d s r22 , a ; pushing parameters (a
consider first parameter)

l d s r23 , b
25 push r23 ; pushing parameters; b

goes in first, a second
push r22
c a l l sum sqrs
pop r22 ; removing parameters
pop r23

30 c a l l p int ; printing the result
left in r25:r24 by sum_sqrs

c a l l p r t new l in e

c l i ; stopping program
s l e e p

35

r e t

sum sqrs :
;; computes a * a + b * b

40 ; SETTING FRAME
push r28 ; saves old frame /

base pointer
push r29
in r28 , SPL ; retrieving stack

pointer value and initializing Y
in r29 , SPH ;

102

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

45 sbiw r28 , 2 ; allocating space for
2 local variables; a byte each

out SPL , r28 ; adjusting stack
pointer for local variables

out SPH, r29 ; END SETTING FRAME

50

ldd r24 , Y+7 ; first parameter (a)
mul r24 , r24 ; a * a
mov r24 , r0 ; result in r24

(ignoring r25)
std Y+1, r24 ; storing in first

local variable
55

ldd r24 , Y+8 ; second parameter (b)
mul r24 , r24 ; b * b
mov r24 , r0 ; result in 24

(ignoring r25)
std Y+2, r24 ; storing in second

local variable
60

ldd r24 , Y+1 ; accessing first local
variable

ldd r25 , Y+2 ; accessing second
local variable

add r24 , r25 ; sum
c l r r1 ; we must always leave

it as 0
65 c l r r25 ; r25:r24 has the result

; THROWING AWAY FRAME
70 adiw r28 , 2 ; throws away locals

out SPL , r28 ; adjusting stack
pointer

out SPH, r29
pop r29 ; restoring old frame /

base pointer
pop r28 ; END THROWING AWAY

FRAME
75

r e t

p int :
;; prints an integer value, r23:r22 have the

format string
80 l d i r22 , l o8 (pctd) ; lower byte of the

string address
l d i r23 , h i8 (pctd) ; higher byte of the

string address
push r25
push r24
push r23

85 push r22
c a l l p r i n t f
pop r22
pop r23
pop r24

90 pop r25

r e t

p r t new l in e :
95 ;; prints newline

103

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

c l r r25
l d i r24 , 10
c a l l putchar

100 r e t

Since we haven’t done Assembly in a while, we can review the basics again:

The .set directive allows us to define a symbolic constant. On Lines 5 and 6, we’re declaring SPH and
SPL to be the hexadecimal numbers 0x3e and 0x3d respectively. Why are we declaring these constants? The
hexadecimal numbers 0x3e and 0x3d are special memory addresses, representing the high and low bytes of
the stack pointer. We should know these values.

Next, the .data directive indicates that we’re going to be initializing data. We’ve initialized the pctd
label to be a null-terminated string by using the .asciz directive. Likewise, we’ve used the labels a and b to
store 3 and 4.

Now we will indicate that our program code is beginning with the .text function. The .global directive
is equivalent to the extern keyword in C. It allows the main function to be accessible from outside of the
current file. What

Finally, we can start our main function. What happens when we reach this function? Whatever value
is at the top of the stack is used to initialize the program counter (which indicates the next instruction to
be executed). Thus, it’s important to be careful — if we use the stack for another purpose, it’s important
to perform the appropriate number of pops. When ret is executed, whatever is at the top of the stack is
removed, and the program counter will continue executing whatever is left. So far, we’ve been using the stack,
but we haven’t had to do any initializing of it.

In our main function, we first load the contents of a and b (which are 3 and 4) into registers r22 and r23,
respectively. There’s nothing special about these registers — we could have used any pair of registers. Next,
we push the two registers in reverse order (since a is our first argument and b is our second argument to the
sum_sqrs function, we’ll push b and then push a). Why do we push in reverse order? It’s just a matter of
convenience so that our first argument can be found at Y + 7, and the second argument can be found at
Y + 8 (refer to the diagram on the previous page). Now, we can call our function.

We’ve now called our sum_sqrs function. Let’s look at what’s going on in there.

104

Ekesh Kumar
Prof. Nelson Padua-Perez

Introduction to Computer Systems
Summer 2019, Section 0101

A The Make Utility

The Make Utility allow us to simplify the process of compiling code. When we increase the size of our
software, we’ll likely have several files we need to deal with. It would be pretty inefficient to compile all of
our files for a small change in a single file. So, this is where our utility come into play: they let us keep track
of what’s been modified and what needs to be re-compiled.

Suppose we have a program called puzzles.c and we want to run a public test named public01.c.
Typically, we’d execute gcc puzzles.c public01.c and run the executable a.out. But, it turns out that
we could have compiled these files separately with the -c flag (which is used to create the .o object file).
That is, we could’ve run gcc -o puzzles.c and gcc -o public01.c separately to produce the puzzles.o
and public01.o object files. The key takeaway here is that we can compile .c files individually, even if they
don’t have a main (However, at least one file needs a main).

So, what are the advantages to being able to compile files individually? If we’re only modifying one file,
we’ll only need to re-compile that one file. However, we will always need to re-link the object files.

Now what? Now, we need to link these object files in order to create our executable. We can do this by
typing gcc -o public01 public01.o puzzles.o, which will produce an executable called public01 from the
two object files we have.

The make utility uses something called a Makefile, which we can modify with any text editor. The
Makefile provides a set of rules that identifies what needs to be compiled, A good way to understand how a
Makefile can help us is through the following example:

Suppose we’ve got a driver file called publicX.c, which makes use of some of the functions defined in
puzzles.c. Now, there’s also a puzzles.h file, which contains the headers for the functions in the puzzles.c
fie. Both publicX.c and puzzles.c include the puzzles.h file.

Before we create our Makefile, we need to understand our “tree” of dependencies. There are some basic
dependency rules we need to understand:

1. Executables depend on all of the object files that could compose the program.

2. Executables are made by linking object files.

3. Object files depend on their respective source files (x.o depends on x.c) and any header files included
in the source files.

4. Object files are created by compiling .c files with the -c flag.

Now, in our Makefile, we list compilation rules in pairs of two lines. These are referred to as rules. Each
rule has a target (a file name followed by a colon). After the colon comes a list of that file’s dependencies.
On the subsequent line, a command is provided, which specifies how to compile the program. The lines
containing the commands must begin with a tab character.

In our example, we’d have the following Makefile:

Listing 78: Makefile 1

publicX : publicX . o puzz l e s . o
gcc −o publixX publicX . o puzz l e s . o

publicX . o : publicX . c puzz l e s . h
5 gcc −c publicX . c

puzz l e s . o : puzz l e s . c puzz l e s . h
gcc −c puzz l e s . c

This Makefile specifies, for example, that if publicX.c is modified, then publicX.o will need to be re-linked.
It’s important to remember that the second line of a rule must begin with a tab character.

105

	Tuesday, May 28, 2019
	Logistics
	Basic Unix Commands
	Introduction to C Programming

	Wednesday, May 29, 2019
	More Unix Commands
	Compilation Stages of a C Program
	Variables in C

	Friday, May 31, 2019
	printf() and scanf()
	Control Statements
	Functions

	Monday, June 3, 2019
	The sizeof Operator
	Introduction to Pointers
	Pointers as Parameters

	Tuesday, June 4, 2019
	Identifier Scopes

	Wednesday, June 5, 2019
	Invalid Uses of Pointers
	Null Pointers
	Introduction to Arrays
	Arrays as Parameters

	Monday, June 10, 2019
	Pointing to a Local Variable
	String Comparison
	Copying Strings
	String Literals
	Void Pointers
	Pointers to Pointers

	Wednesday, June 12, 2019
	Command Line Parameters
	Two-Dimensional Arrays
	Two-Dimensional Character Arrays
	The typedef Keyword
	An Exception to Typedef

	Structures
	Combining Typedefs with Structs
	Pointers to Structures
	Monday, June 17, 2019
	Exit Codes
	Text and Binary Streams
	Standard Input/Output

	Wednesday, June 19, 2019
	The scanf() Family
	The printf() Family
	Dynamic Memory Allocation

	Friday, June 21, 2019
	Recap of Dynamic Memory Allocation
	Dynamically Allocated Structures
	Pointer Aliases
	Common Errors

	Monday, June 24, 2019
	Linked Lists

	Wednesday, June 26, 2019
	Operating on Memory Blocks
	Function Pointers

	Thursday, June 27, 2019
	Memcpy and Memset
	Searching Files with Grep
	Data Representation
	Character Representation
	Integers
	Floats and Doubles

	Imprecision with Real Numbers

	Monday, July 1, 2019
	Unix File Permissions
	Introduction to Assembly Language
	An Illustrative Example

	Tuesday, July 2, 2019
	Data Space Instructions
	Instructions List
	Caller/Callee Saving
	Arguments and Return Values
	Accessing Memory

	Wednesday, July 3, 2019
	More on Register Pointers
	Instruction Encoding and the Status Register
	Branch Instructions

	Monday, July 8, 2019
	Large Addition and Unsigned Multiplication
	Even More on Register Pointers
	The Call Stack and Recursion

	Tuesday, July 9, 2019
	Encapsulation and Abstraction
	Miscellaneous

	Wednesday, July 10, 2019
	Process Control Terminology
	System Calls
	Processes vs. Threads
	Signals
	Creating Processes

	Friday, July 12, 2019
	Reaping Child Processes
	Environmental Variables
	Nested Processes

	Monday, July 15, 2019
	Hiding Processes
	The waitpid() System Call
	Unix I/O
	File Operations

	Wednesday, July 17, 2019
	Unix I/O Redirection
	Introduction to Pipes

	Friday, July 19, 2019
	More on Pipes
	Introduction to Concurrency

	Monday, July 22, 2019
	Retrieving Values from Threads
	Locks, Mutexes, and Semaphores
	System and Unix Time
	Date and Time Functions

	Friday, July 26, 2019
	Thread Safety
	Libraries

	Monday, July 29, 2019
	Dynamically-loaded Libraries
	Introduction to Optimization
	Types of Optimizations
	Code Motion
	Loop Unrolling
	Dead Code Elimination and Other

	Amdahl's Law

	Wednesday, July 31, 2019
	Memoization
	Parametrized Macros
	Virtual Memory
	Signals

	Friday, August 2, 2019
	Back to Assembly
	AVR Stack Frame

	The Make Utility

