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Linear Algebra Cheatsheet

1. The state of a system in quantum mechanics are represented by vectors in a (finite dimensional in
the case of quantum computing) vector space over the complex numbers. Such spaces are known as
Hilbert spaces and the a vector labelled a is denoted by |a〉. Each vector can be associated with a
column vector with complex coefficients, eg. a 4 dimensional Hilbert Space H can contain vectors such

as
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
Hilbert spaces for quantum computing are often of dimension 2n where n is a positive integer. Any
vector in a N dimensional space can be written as the sum of N basis vectors. For example, if we have
basis vectors {|b1〉 , |b2〉 , . . . , |bN 〉}, an arbitrary vector can be written as

∑
n
cn |bn〉

Often a convenient basis is chosen and termed as the computational basis. The 2n basis vectors are
labelled by the 2n n bit bitstrings representing the natural numbers from 0 to 2n − 1. Here the bit
string labelled j has 1 as the jth dimension and 0 everywhere else.

2. The dual of a vector space over the complex numbers is the set of linear maps from vectors in the vector
space to the complex numbers. The dual space of a vector space over the complex numbers is itself
a vector space over the complex numbers corresponding to row vectors of the same dimension as the
original space. The dual space for a Hilbert space H is H∗. Each column vector in H is associated with
a row vector in H∗, which is its transpose conjugate (obtained by transposing the matrix and taking

the complex conjugate of each of its entries) eg. The dual vector of
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The dual vector of |ψ〉 is denoted by 〈ψ| (read as a bra).

3. The inner product of two vectors |ψ〉 with |φ〉 is defined as 〈φ| |ψ〉 which can be computed by multiplying
the row vector representing 〈φ| with the column vector representing ψ.

The magnitude of a vector |ψ〉 is defined as
√
|〈ψ| |ψ〉|

4. The Kronecker delta δm′n′ is defined to be equal to 1 if m′ = n′ and 0 otherwise. A set of vectors
{|b1〉 , |b2〉 , . . . , |bn〉} is said to be orthonormal if 〈bm′ | |bn′ 〉 = δm′n′ . An orthonormal set of basis vectors
is called an orthonormal basis. The computational basis introduced earlier is clearly orthonormal.

5. A linear operator on a vector space is a linear transformation T : H → H that maps vectors in H to
vectors in H.

The outer product of two vectors |ψ〉 and |φ〉 is denoted by |ψ〉 〈φ|. The outer product is a linear
operator whose action is defined by

(|ψ〉 〈φ|) |λ〉 = |ψ〉 (〈φ| |λ〉) = (〈φ| |λ〉) |ψ〉

The outer product of a vector |ψ〉 with itself |ψ〉 〈ψ| is an operator that maps each vector |λ〉 to
〈ψ| |λ〉 |ψ〉. Thus the operator acts as a projector projecting vectors into the subspace spanned by |ψ〉
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6. Suppose B = {|b1〉 , |b2〉 , . . . , |bN 〉} is an orthonormal basis. Then every linear operator T on H can
be written as

T =
∑

1≤m,n≤N

Tmn 〈bm| |bn〉

(This representation directly encodes the action of T on each basis vector, which linearly extends to
other vectors). This also allows us to write each linear operator as a matrix with Tmn as the (m,n)
entry.

7. The adjoint of an operator T is denoted by T † and is defined as that linear operator on H∗ that satisfies

(〈ψ|T † |φ〉)∗ = 〈φ|T |ψ〉 ,∀ψ, φ ∈ H

8. The identity operator I over a Hilbert Space H maps every vector in H to itself. For any orthonormal
basis B = {|bi〉}, I =

∑
i

|bi〉 〈bi|

9. A linear operator U with U†U = I is called a Unitary operator

A linear operator H with H = H† is called a Hermitian operator

A linear operator A with AA† = A†A is called a Normal operator (both unitary and hermitian operators
are normal)

10. A vector |ψ〉 is called an eigenvector of an operator T if

T |ψ〉 = cψ |ψ〉

where cψ is a constant and is called the eigenvalue corresponding to |ψ〉.
All the eigenvalues of a Hermitian operator are real

11. The trace of an operator T acting on a N -dimensional Hilbert space H is defined as

Tr(T ) =

N∑
i=1

〈bi|T |bi〉

where B = {|bi〉} is any orthonormal basis. This value is independent of the basis used. It is the sum
of the diagoanl entries of the matrix.

12. The following is one of the most important algorithms in linear algebra (and specifically in the context
of quantum mechanics)

Theorem 0.1 (Spectral Theorem). For every normal operator T over a finite dimensional Hilbert
space H there exists an orthonormal basis for H that consists of the eigenvectors of T .

Let us index the eigenvectors of T as {|Ti〉}, with Ti as the corresponding eigenvalues . T is diagonal
in its own eigenbasis and can thus be written as

T =
∑
i

Ti |Ti〉 〈Ti|

13. Since {|Ti〉} is an orthonormal basis, |Ti〉 〈Ti|m = |Ti〉 〈Ti|. Thus,

Tm = (
∑
i

Ti |Ti〉 〈Ti|)m =
∑
i

Tmi |Ti〉 〈Ti|

2



Thus any function f : C → C with a power series expansion (eg. a Taylor-McLaurin Series) can be
extended to linear operators as:

f(x) =
∑
j

ajx
j =⇒ f(T ) =

∑
j

ajT
j

Thus, rearranging terms, we have,

f(T ) =
∑
i

(
∑
j

ajT
j
i ) |Ti〉 〈Ti| =

∑
i

f(Ti) |Ti〉 〈Ti|

14. The Tensor product ⊗ is used to combine spaces vectors and operators in two Hilbert Spaces H1

(dimension n) and H2 (dimension m). Let {|bi〉} and {|cj 〉} be orthonormal bases for H1 and H2

respectively. Then the vectors {|bi〉 ⊗ |cj 〉} form the basis for the composite space H1 ⊗ H2. For,
|ψ〉 ∈ H1 |φ〉 ∈ H2,

|ψ〉 ⊗ |φ〉 =
∑
i,j

〈bi| |ψ〉 〈cj | |φ〉 |bi〉 ⊗ |cj 〉

For operators we require (A⊗B)(|ψ〉 ⊗ |φ〉) = A |ψ〉 ⊗B |φ〉. Similarly to the definition for vectors we
have

A⊗B =
∑

i,j,i′,j′

AijBi′j′(|bi〉 ⊗ |ci′ 〉)(〈bj | ⊗ 〈cj′ |)
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