
Dynamic data structures 
for searching



Binary search trees

 Let K1, K2, ..., Kn be n distinct keys in ascending 
order.

 Let T be a binary tree with n nodes, and let Ni be the 
i'th node visited in a symmetric order traversal of 
the tree (left, root, right).

 If we store Ki in Ni, then the binary tree has the 
binary search property:  At each node Ni, with key 
Ki, all nodes in the left subtree of Ni have keys less 
than Ki and all nodes in the right subtree of Ni have 
keys greater than Ki.



Binary search 
trees

 To search a binary search tree for a 
key K:

1) If K matches the key at the root, 
done.

2) If K is less than the key at the 
root, search the left subtree

3) Otherwise, search the right 
subtree.

4) Reaching a nil link ends in failure.
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Insertion into a BST
 To insert (K)

 search for K

 if search fails, it will fail 
at a leaf node.  

 insert (K) as the 
appropriate son of the 
leaf node at which 
search fails

 An unlucky sequence of 
insertions can inbalance 
the tree badly
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Deletion from a BST

 Search(K) to find location of item 
to be deleted.  

 Leaf node - delete immediately

 Node with one child - replace 
with child and delete empty 
child node

 Node with two children:

 replace with smallest node in the 
right subtree

 then recursively delete the replaced 
node

 because this is the smallest node, it 
cannot have a left son, so deleting it 
is easy
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Good and bad binary search trees
 Given a set of keys, there exist many binary search 

trees that can be built based on those keys.

 Define the internal path length of a BST to be the 
sum of the lengths of the paths from the root to 
each node.  Every successful search will follow one 
of these paths.

 We can also define an external path length by 
appending dummy square nodes where empty 
subtrees occur (these are places where 
unsuccessful searches terminate) and computing 
the sum of the lengths of the paths to these dummy 
nodes.



Good and bad 
BST's

 Internal path length = 6

 external path length = 16

 average successful search = 6/5

 average unsuccessful search = 16/6
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Good and bad BST's
 Let's assume that all of the keys in the BST are equally 

likely candidates for searches

 What is the best BST?

 The one with minimum internal path length

 Complete binary tree which has an internal path 
length of logn +1

 What is the worst BST?

 One with linear structure

 Internal path length is n(n+1)/2

 How well does a random BST do?

 About 1.386 log n +1 - not much worse than optimal!



Dynamic BST's

 Static BST's

 Suppose keys do not have equal probability of being 
searched for, but the probabilities are known.  Can 
we construct an optimal BST?

 Dynamic BST's

 Suppose keys can be inserted and deleted in a BST.  
How can we keep a BST balanced as keys are added 
and removed?

 If we are willing to keep the BST "almost balanced" 
are better algorithms available? (AVL trees, splay 
trees and B-trees)



AVL Trees
 Define the left and right height of a nonempty 

binary tree, T as follows:

Leftheight(T) =  0 if LSON(T) = Nil

1 + height(LSON(T)) otherwise

Rightheight(T) = ...

 Height of a node is the maximum of its 
Leftheight and Rightheight.

 The balance of a node is Rightheight-Leftheight

 T is an AVL tree if every node has balance +1, 0, 
-1



AVL Trees

 Every AVL tree with n nodes 
has height O(logn)

 so all successful and 
unsuccessful searches take 
O(logn) time

 A node can be added to or 
deleted from an AVL tree 
with n nodes in time O(logn) 
while preserving the AVL 
property
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Insertion into AVL trees
 Representation of AVL trees

 add a balance field to each node in a binary tree

 two bits are sufficient to encode the possible balances 
of +1, 0, -1

 General insertion algorithm:

1) Using the binary tree insertion method, trace a path 
from the root and insert the new node as a leaf.  
Remember the path

2) Retrace the path towards the root, updating the 
balance factors

3)When encountering a node for which the balance 
becomes +2 or -2, readjust the subtrees of that node 
and its descendants to obtain a BST with AVL balances 



Insertion into AVL 
trees

 A node that was out of balance becomes perfectly 
balanced

 All ancestors are OK since height of node has not 
changed, and only its height affects ancestor balance
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Let the node that needs rebalancing be .

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .
2. Insertion into right subtree of right child of .

Inside Cases (requires double rotation) :
3. Insertion into right subtree of left child of .
4. Insertion into left subtree of right child of .

The rebalancing is performed through four 
separate rotation algorithms.

Insertions in AVL Trees
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AVL subtree

AVL Insertion: Outside Case
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Inserting into X
destroys the AVL 
property at node r

AVL Insertion: Outside Case
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Do a “right rotation”
Left(r) <- Y

AVL Insertion: Outside Case
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Do a “right rotation”
Left(r) <- Y

Single right rotation

h

h+1 h

Change 2 links



courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X Y Z

Right(p) <- r

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored
BST properties still hold
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Inserting into Y 
destroys the
AVL property
at node r

r

p

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”
restore balance?
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“Right rotation”
does not restore
balance… now p is
out of balance

AVL Insertion: Inside Case
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Consider the structure
of subtree Y…
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AVL Insertion: Inside Case
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Y = node q and
subtrees V and W

AVL Insertion: Inside Case
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AVL Insertion: Inside Case

We will do a left-right 
“double rotation” . . .
Right(p) <- V
Left(q) <- p
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Double rotation : first 
rotation

left rotation complete
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p

X V

Z
W

q

Double rotation : second 
rotation

Now do a right rotation
Left(r) <- W
Right(q) <- r



courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

rp

X V ZW

q

Double rotation : second 
rotation

right rotation complete

Balance has been 
restored

hh h or h-1
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Example of Insertions in 
an AVL Tree
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Example of Insertions in 
an AVL Tree
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Single rotation (outside 
case)
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Double rotation (inside 
case)
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AVL Tree Deletion

 Similar but more complex than 
insertion

 Rotations and double rotations 
needed to rebalance

 Imbalance may propagate upward so 
that many rotations may be needed.



Lists and optimal sequential search

 Consider a simple linked list as a 
representation for a set of keys.

 Standard solution involves 
 sorting keys in list in advance

 search fails when we reach a key 
greater than the query key, or reach 
the end of the table.



Lists and optimal sequential 
search

But sorting is the ``optimal’’ strategy 
only if all keys are equally likely to be 
requested

 If one key is the subject of 99% of all queries,  
should  place that key at the beginning of 
the table.

 But then the list will (probably) not be 
sorted



Minimizing the average cost of a 

search

 Intuitively, if we knew the probabilities of keys being 
accessed beforehand, then we would construct the 
list by ordering the keys according to their 
probability to minimize the expected cost of 
searching the list.

 But, we do not generally know these probabilities 
ahead of time.

 However, we can do almost as well as optimal if we 
reorder the list after each query.



The Move-to-Front 
heuristic

 After each successful search, the accessed element is moved 
to the front of the list
 for a singly linked list this is very efficient to accomplish.

 Suppose we have a long sequence of queries.
 If we knew the sequence ahead of time, we could use it to 

compute estimates of the P(q = ei) and order our list in 
decreasing order of these probabilities.  

 This is called the static optimal list, and there would be a total 
cost associated with answering all of the queries in the sequence.

 This cost is mimimum over all possible permutations of the list 
because if we interchanged two elements in the optimal list, the 
time saved in searching for the less frequently asked for key is 
not as much as the extra cost incurred in searching for the more 
popular key.



The Move-to-Front heuristic

 Fact:  Given a sufficiently long sequence of queries to 
a list containing the keys mentioned in the queries, 
the cost of answering these queries with the move-to-
front heuristic is never more than twice the cost of 
answering the queries using the static optimal list.

 We need to consider a long list of queries, because 
one query, for example, can take long using the mtf 
heuristic (just ask for the last element in the list)

 This is proved using a proof method called amortized 
analysis.



Splay trees
 Called self-adjusting binary search trees

 No colors, balance or auxiliary fields - just a vanilla BST

 Lookup, insertion and deletion  algorithms do not have O(logn) 
worst case complexity.

 But they have an amortized cost of log (n) - i.e., a sequence of m 
operations starting with an empty tree will take exactly mlog(n) 
operations, where n is the size of the largest tree constructed 
during the sequence.

 So, while a single operation can have a high cost - (n) - this can 
only happen if it is preceded by many operations whose total 
cost is small, since the entire sequence must take mlog(n) 
operations.



Splay trees
 In order to accomplish this, we must move an item 

after accessing it

 otherwise we could continue to access an item at the 
end of a path of length O(n) and could not guarantee the 
amortized cost bound

 The key accessed is pushed up to the root of the 
tree by a sequence of AVL tree like rotations.

 If a key is deep, then as we rotate we will also 
bring keys on the path closer to the root - the 
rotations will tend to balance an unbalanced tree.
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Splay trees: bottom-up splaying

 Splaying = moving an item to the root via a 
sequence of rotations

 In bottom-up splaying, we start at the node being 
accessed, and rotate from the bottom up along the 
access path until the node is at the root.

 The nodes that are involved in the rotations are 

 the node being accessed (N)

 its parent (P)

 its grandparent (G) 
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Splay trees: bottom-up splaying
 The rotation depends on the positions of the current node 

N, its parent P and its grandparent G

• If N is the root, we are done

• If P is the root,  perform a 
single rotation 

N

P N

P

P

N

P

N

G

G

P

N G

• If P and N are both left or both right children, first rotate P 
and then N as shown below
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Splay trees: bottom-up splaying

• If P is a left child and N is a right child (or vice 
versa), first rotate P and then N as shown below

P
N

P
N

G

G
N

P

G
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Splay trees: bottom-up splaying

 Search

 Once the node has been found, splay it

 Insert

 Insert the new node and immediately splay

 Delete

1. Do a Search for the node to be deleted. It will end up at 
the root. Removing it will split the tree in two subtrees, 
the left (L) and the right (R) one

2. Find the maximum in L and splay it to the root of L. This 
root will have no right child

3. Make R a right child of L



Example
 Look at the effect of

 inserting keys 1,2,3,4,5,6,7 in order into an initially empty 
tree

 then accessing key 1, so we splay on 1.

 Each insertion will take constant time

 splay (k,T) will fail at the root, since k will always be 
greater than the key stored at the root, and the right child 
of the root will be empty

 so, we’ll create a new root for k, and have its left link point 
to the old splay tree

 this takes constant time

 The access of key 1 will then halve the path length to each 
node in this bad tree
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Code for splaying

type

splay_ptr = ^splay_node

splay_node = record

element: element_type

left: splay_ptr

right: splay_ptr

parent: splay_ptr

end

SEARCH_TREE = ^ splay_node



Basic splay routine

procedure splay (current:splay_ptr)
var father : splay_ptr

begin
father := current^.parent

while father <> nil do

begin

if father^.parent = nil then

single_rotate (current)

else

double_rotate(current)

father := current^.parent

end

end



Single rotation

procedure single_rotate(x:splay_ptr)

begin

if x^.parent^.left = x then

zig_left(x)

else

zig_right(x)

end



Zig left - single rotation 

between root and its left child

procedure zig_left(x: splay_ptr)

var p, B :splay_ptr

begin

p := x^.parent

B := x^.right

x^.right := p

x^.parent := nil

if B <> nil then B^.parent := p

p^.left := B

p^.parent := x

end



2-3 Trees
 Tree in which nodes that are not leaves may have 

either 2 or 3 children

 By arranging both types of nodes, can make a 
“perfectly balanced” tree in terms of path length

 Definition of a 2-3 tree:

 all leaves are at the same depth and contain 1 or 2 keys

 an interior node either contains one key and has two 
children (a 2-node) or contains 2 keys and 3 children (a 3-
node)

 A key in an interior node is between the keys in the subtrees 
of its adjacent children.  For a 3-node the 2 keys fall between 
the 3 subtrees.



2-3 Trees

H      R

D L       N U

B E J M P   Q T Z



2-3 Trees
 A 2-3 tree having n keys can have height at 

most log2n.  This occurs when all of the nodes 
are 2-nodes, and we have a perfect binary tree

 A 2-3 tree in which all of the nodes are 3-nodes 
and which contains n keys will have height 
log3n.

 Searching a 2-3 tree involves only trivial 
modifications to the BST algorithm to handle 
the 3-nodes.  But insertion and deletion are 
complicated



Insertion into 2-3 trees

 Search for the leaf where the key belongs, 
remembering the path to that leaf.

 If the leaf contains only one key, add the key 
to that leaf and stop (example - add F to the 
2-3 tree)



Insertion into 2-3 trees
 If the leaf is full, split it into two 2-nodes - using 

the first and third key - and pass the middle key 
up to the parent to separate the two keys left in 
the leaf.

 If the parent was a 2-node, it is changed into a 3-
node and we stop.  Otherwise, we repeat the 
splitting step to the parent, promoting one of its 
keys up another level in the tree.

 If the root must be split, a new root is created 
and the height of the tree is increased by one.



Example - insertion of O
H      R

D L       N U

B E J M P   Q T Z

H      R

D L       N U

B E J M O  P  Q T Z



H      R

D L       N U

B E J M O  P  Q T Z

H      R

D L       N      P U

B E J M T ZO Q



H      R

D L       N      P U

B E J M T ZO Q

H   N   R

D L            U

B E J M T ZO Q

P



H   N   R

D L            U

B E J M T ZO Q

P

D L            U

B E J M T ZO Q

P

H R

N 2-3 Trees ALWAYS
grow from the root 
UPWARDS



Deletion from 2-3 trees
 [Always delete from a leaf]  If the key to be deleted is 

in a leaf, remove it.  If not, then the key’s inorder 

successor is in a leaf (it is the leftmost node in the 
“right” subtree of that key). Replace the key by its 
inorder successor and remove the inorder successor 
from the leaf in which it was found.

H      R

D L N U

B E J M P    Q T Z

D M      N

B E J P     Q

delete L



Deletion from 2-3 trees

 Suppose we deleted a key from node .  If  still 
has one key, stop.  If  has no keys:

 If  is the root, delete it.  If  had a child, this child 
becomes the new root.



Deletion from 2-3 trees

  must have one sibling (only the root doesn’t).  

If  has a sibling ’ immediately to its left or right 
that has 2 keys, then let S be the key in the parent 
that separates  and ’.  Move S to  and replace 
it in the parent by the key in ’ that is adjacent to 
. 

If  and ’ are interior nodes, then also move one 
child of ’ to be a child of .   and ’ end up 
with one key each, rather than 0 and 2, and the 
algorithm is complete. 



  has a sibling ’ immediately to its left or 
right that has 2 keys

 N is the key in the parent that separates 
and ’

 Move N to  and replace it in the parent by 
the key in ’ that is adjacent to  = P. 

D M      N

B E J P    Q

D M      P

B E J N Q

 ’



Deletion from 2-3 trees

 Continuing case of  having no keys and no 
chance of borrowing from sibling
 [ has a sibling ’ to its left or right that has only 

one key].  Let  be the parent of  and ’, and let 

S be the key in  that separates them. 
Consolidate S and the one key in ’ into a new 3-
node which replaces both  and ’. This reduces 

by one both the number of keys in  and the 
number of children of . Set  to  and go back 
to the second major step of the algorithm.



Example - deletion of E
H      R

D L       N U

B E J M P   Q T Z

H      R

L       N U

B     D J M P   Q T Z

’

parent Let  be the parent 
of  and ’, and let S 

be the key in  that 
separates them. 
Consolidate S and 
the one key in ’
into a new 3-node 
which replaces both 
 and ’. 



Example - deletion of E

H      R

L       N U

B     D J M P   Q T Z

L      R

N U

B     D J M P   Q T Z

 ’

H

This reduces by one 
both the number of 
keys in  and the 
number of children of 
. Set  to  and go 
back to the second 
major step of the 
algorithm. In this case 
we can move a key 
from ’
up to the parent and 
one from the parent 
down.



More examples - delete R
H      R

D L       N U

B E J M P   Q T Z

H      T

D L       N U

B E J M P   Q Z



Delete R
H      T

D L       N

UB E J M P   Q Z

U was the key in parent 
that separated siblings; 
combine U with Z and 
remove U from parent -
underflows parent.

Rotate key from 
sibling to parent, 
and borrow key 
from parent; 
readjust pointers to 
children

H      N

D L

UB E J M P   Q Z

T



Insert R
H

D L

B E J M P   Q  R U Z

T

N

H

D L

B E J M P U Z

T      Q

N

R

Split overflow 
node into two 
nodes, promoting 
middle key to 
parent.



Difficulties with 
implementing 2-3 trees

 2-nodes and 3-nodes have to be handled as 
separate cases

 have to resort to variant records, for 
example, but these can waste storage

 can we find a way to model 2-3 trees using 
regular binary trees?

 red/black trees



Skip lists
 How can we combine the simplicity of binary 

search over sequential allocation with the ease 
of insertions/deletions of linked lists?

 Skip lists - hierarchies of linked lists

 List array (bad solution on the way to skip lists)

1) linked list at the bottom contains all of the 
elements of the set

2) linked list at next level links every other element 
together.

3) linked list at i'th level links every 2**(i-1) 
elements



List array -
example

0

1

2

3

am bo do fa ka lo su to



Searching in a list array

 Start at the highest level

 Scan the elements until encountering a 
node, p,  whose value is greater than or 
equal to the key sought, k.

 If k is the value of node p, done; 
otherwise descend one level from the 
predecessor of p. 



Searching in a list array

 If we reach the end of the lowest level 
list, the search fails.

 If list contains n elements, then search 
takes at most 2 logn operations since 
there are logn lists and at most 2 
elements per list are examined before 
descending. 



Search 
example

0

1

2

3

am bo do fa ka lo su to

• Searching for RA follows the bold links.



Disadvantages of list arrays
 Consider the problem of updating the list array

 Inserting an element at the beginning of the list 
involves changing the level of every element in the 
list

 Solution - relax the constraint that we skip a constant 
number of elements at each level of the list array, as 
long as the average number of nodes skipped is about 
right.

 Skip lists - list array built by generating the skip 
increment randomly.  Design insertion routine to be 
twice as likely to generate a skip at level i than at 
level i+1



Insertion into a skip list

 Goal - insert a node with key k into a skip 
list

1) Search for k in the skip list, remembering the 
link fields traversed during the search at each 
level.

2) If the search is unsuccessful, position where 
k should be inserted at lowest level has been 
found - make the insertion



Insertion into a skip list

3) Generate a random number in [0,1] and:

a) if the number is less than .5, then exit

b) if the number is greater than or equal to .5, 
ascend to level i+1 and insert k at this level.

c) Repeat this step if there are any more 
levels in the skip list.

4) Note that the probability of ascending n levels 
is 1/2**n, so that the skip list cannot grow very 
high. Usually a prior max level is set.



Skip list example – insert 
“le”
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am bo do fa ka lo su tole


