
Dynamic data structures
for searching

Binary search trees

 Let K1, K2, ..., Kn be n distinct keys in ascending
order.

 Let T be a binary tree with n nodes, and let Ni be the
i'th node visited in a symmetric order traversal of
the tree (left, root, right).

 If we store Ki in Ni, then the binary tree has the
binary search property: At each node Ni, with key
Ki, all nodes in the left subtree of Ni have keys less
than Ki and all nodes in the right subtree of Ni have
keys greater than Ki.

Binary search
trees

 To search a binary search tree for a
key K:

1) If K matches the key at the root,
done.

2) If K is less than the key at the
root, search the left subtree

3) Otherwise, search the right
subtree.

4) Reaching a nil link ends in failure.

m

f t

a g p w

Insertion into a BST
 To insert (K)

 search for K

 if search fails, it will fail
at a leaf node.

 insert (K) as the
appropriate son of the
leaf node at which
search fails

 An unlucky sequence of
insertions can inbalance
the tree badly

m

f t

a g p w

insert n

m

f t

a g p w

n

Deletion from a BST

 Search(K) to find location of item
to be deleted.

 Leaf node - delete immediately

 Node with one child - replace
with child and delete empty
child node

 Node with two children:

 replace with smallest node in the
right subtree

 then recursively delete the replaced
node

 because this is the smallest node, it
cannot have a left son, so deleting it
is easy

m

f t

a g w

t

f

a g w

delete m

t

f

a g

w

Good and bad binary search trees
 Given a set of keys, there exist many binary search

trees that can be built based on those keys.

 Define the internal path length of a BST to be the
sum of the lengths of the paths from the root to
each node. Every successful search will follow one
of these paths.

 We can also define an external path length by
appending dummy square nodes where empty
subtrees occur (these are places where
unsuccessful searches terminate) and computing
the sum of the lengths of the paths to these dummy
nodes.

Good and bad
BST's

 Internal path length = 6

 external path length = 16

 average successful search = 6/5

 average unsuccessful search = 16/6

m

f t

a p

a

t

f

p

m

internal path length = 10

external path length = 1
+2+3+4+5+5 = 20

1 1

2 2

1

2

3

4

Good and bad BST's
 Let's assume that all of the keys in the BST are equally

likely candidates for searches

 What is the best BST?

 The one with minimum internal path length

 Complete binary tree which has an internal path
length of logn +1

 What is the worst BST?

 One with linear structure

 Internal path length is n(n+1)/2

 How well does a random BST do?

 About 1.386 log n +1 - not much worse than optimal!

Dynamic BST's

 Static BST's

 Suppose keys do not have equal probability of being
searched for, but the probabilities are known. Can
we construct an optimal BST?

 Dynamic BST's

 Suppose keys can be inserted and deleted in a BST.
How can we keep a BST balanced as keys are added
and removed?

 If we are willing to keep the BST "almost balanced"
are better algorithms available? (AVL trees, splay
trees and B-trees)

AVL Trees
 Define the left and right height of a nonempty

binary tree, T as follows:

Leftheight(T) = 0 if LSON(T) = Nil

1 + height(LSON(T)) otherwise

Rightheight(T) = ...

 Height of a node is the maximum of its
Leftheight and Rightheight.

 The balance of a node is Rightheight-Leftheight

 T is an AVL tree if every node has balance +1, 0,
-1

AVL Trees

 Every AVL tree with n nodes
has height O(logn)

 so all successful and
unsuccessful searches take
O(logn) time

 A node can be added to or
deleted from an AVL tree
with n nodes in time O(logn)
while preserving the AVL
property

2,1

0,01,1

-1

0 0

0 0

Insertion into AVL trees
 Representation of AVL trees

 add a balance field to each node in a binary tree

 two bits are sufficient to encode the possible balances
of +1, 0, -1

 General insertion algorithm:

1) Using the binary tree insertion method, trace a path
from the root and insert the new node as a leaf.
Remember the path

2) Retrace the path towards the root, updating the
balance factors

3)When encountering a node for which the balance
becomes +2 or -2, readjust the subtrees of that node
and its descendants to obtain a BST with AVL balances

Insertion into AVL
trees

 A node that was out of balance becomes perfectly
balanced

 All ancestors are OK since height of node has not
changed, and only its height affects ancestor balance

h

h+1

h+2+1

h+1

h+1

h+20

T T

courses.cs.washington.edu/courses/cse373/04wi/sl
ides/lecture08.pp

Let the node that needs rebalancing be .

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .
2. Insertion into right subtree of right child of .

Inside Cases (requires double rotation) :
3. Insertion into right subtree of left child of .
4. Insertion into left subtree of right child of .

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X
Y

Z

Inserting into X
destroys the AVL
property at node r

AVL Insertion: Outside Case

h

h+1 h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X
Y

Z

Do a “right rotation”
Left(r) <- Y

AVL Insertion: Outside Case

h

h+1 h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X
Y

Z

Do a “right rotation”
Left(r) <- Y

Single right rotation

h

h+1 h

Change 2 links

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X Y Z

Right(p) <- r

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored
BST properties still hold

h

h+1

h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X Y

Z

AVL Insertion: Inside Case

Consider a valid
AVL subtree

h

hh

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

Inserting into Y
destroys the
AVL property
at node r

r

p

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”
restore balance?

h

h+1h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r
p

X

Y
Z

“Right rotation”
does not restore
balance… now p is
out of balance

AVL Insertion: Inside Case

hh+1

h

Consider the structure
of subtree Y…

r

p

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X

V

Z

W

q

Y = node q and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X

V

Z

W

q

AVL Insertion: Inside Case

We will do a left-right
“double rotation” . . .
Right(p) <- V
Left(q) <- p

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X V

Z
W

q

Double rotation : first
rotation

left rotation complete

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

r

p

X V

Z
W

q

Double rotation : second
rotation

Now do a right rotation
Left(r) <- W
Right(q) <- r

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

rp

X V ZW

q

Double rotation : second
rotation

right rotation complete

Balance has been
restored

hh h or h-1

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

Example of Insertions in
an AVL Tree

1

0

2
20

10 30

25

0

35

0

Insert 5,
40

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

Example of Insertions in
an AVL Tree

1

0

2

20

10 30

25

1

35

0

5

0

20

10 30

25

1

355

40

0

0

0 1

2

3

Now
Insert
45

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

Single rotation (outside
case)

2

0

3
20

10 30

25

1

35

2

5

0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45

0 0

1

Now
Insert 34

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

Double rotation (inside
case)

3

0

3
20

10 30

25

1

40

2
5

0

20

10 35

30

1

405

45

0
1

2

3

Imbalance

45

0
1

Insertion
of 34

35

34

0

0

1 25 340

courses.cs.washington.edu/courses/cs
e373/04wi/slides/lecture08.pp

AVL Tree Deletion

 Similar but more complex than
insertion

 Rotations and double rotations
needed to rebalance

 Imbalance may propagate upward so
that many rotations may be needed.

Lists and optimal sequential search

 Consider a simple linked list as a
representation for a set of keys.

 Standard solution involves
 sorting keys in list in advance

 search fails when we reach a key
greater than the query key, or reach
the end of the table.

Lists and optimal sequential
search

But sorting is the ``optimal’’ strategy
only if all keys are equally likely to be
requested

 If one key is the subject of 99% of all queries,
should place that key at the beginning of
the table.

 But then the list will (probably) not be
sorted

Minimizing the average cost of a

search

 Intuitively, if we knew the probabilities of keys being
accessed beforehand, then we would construct the
list by ordering the keys according to their
probability to minimize the expected cost of
searching the list.

 But, we do not generally know these probabilities
ahead of time.

 However, we can do almost as well as optimal if we
reorder the list after each query.

The Move-to-Front
heuristic

 After each successful search, the accessed element is moved
to the front of the list
 for a singly linked list this is very efficient to accomplish.

 Suppose we have a long sequence of queries.
 If we knew the sequence ahead of time, we could use it to

compute estimates of the P(q = ei) and order our list in
decreasing order of these probabilities.

 This is called the static optimal list, and there would be a total
cost associated with answering all of the queries in the sequence.

 This cost is mimimum over all possible permutations of the list
because if we interchanged two elements in the optimal list, the
time saved in searching for the less frequently asked for key is
not as much as the extra cost incurred in searching for the more
popular key.

The Move-to-Front heuristic

 Fact: Given a sufficiently long sequence of queries to
a list containing the keys mentioned in the queries,
the cost of answering these queries with the move-to-
front heuristic is never more than twice the cost of
answering the queries using the static optimal list.

 We need to consider a long list of queries, because
one query, for example, can take long using the mtf
heuristic (just ask for the last element in the list)

 This is proved using a proof method called amortized
analysis.

Splay trees
 Called self-adjusting binary search trees

 No colors, balance or auxiliary fields - just a vanilla BST

 Lookup, insertion and deletion algorithms do not have O(logn)
worst case complexity.

 But they have an amortized cost of log (n) - i.e., a sequence of m
operations starting with an empty tree will take exactly mlog(n)
operations, where n is the size of the largest tree constructed
during the sequence.

 So, while a single operation can have a high cost - (n) - this can
only happen if it is preceded by many operations whose total
cost is small, since the entire sequence must take mlog(n)
operations.

Splay trees
 In order to accomplish this, we must move an item

after accessing it

 otherwise we could continue to access an item at the
end of a path of length O(n) and could not guarantee the
amortized cost bound

 The key accessed is pushed up to the root of the
tree by a sequence of AVL tree like rotations.

 If a key is deep, then as we rotate we will also
bring keys on the path closer to the root - the
rotations will tend to balance an unbalanced tree.

41

Splay trees: bottom-up splaying

 Splaying = moving an item to the root via a
sequence of rotations

 In bottom-up splaying, we start at the node being
accessed, and rotate from the bottom up along the
access path until the node is at the root.

 The nodes that are involved in the rotations are

 the node being accessed (N)

 its parent (P)

 its grandparent (G)

42

Splay trees: bottom-up splaying
 The rotation depends on the positions of the current node

N, its parent P and its grandparent G

• If N is the root, we are done

• If P is the root, perform a
single rotation

N

P N

P

P

N

P

N

G

G

P

N G

• If P and N are both left or both right children, first rotate P
and then N as shown below

43

Splay trees: bottom-up splaying

• If P is a left child and N is a right child (or vice
versa), first rotate P and then N as shown below

P
N

P
N

G

G
N

P

G

44

Splay trees: bottom-up splaying

 Search

 Once the node has been found, splay it

 Insert

 Insert the new node and immediately splay

 Delete

1. Do a Search for the node to be deleted. It will end up at
the root. Removing it will split the tree in two subtrees,
the left (L) and the right (R) one

2. Find the maximum in L and splay it to the root of L. This
root will have no right child

3. Make R a right child of L

Example
 Look at the effect of

 inserting keys 1,2,3,4,5,6,7 in order into an initially empty
tree

 then accessing key 1, so we splay on 1.

 Each insertion will take constant time

 splay (k,T) will fail at the root, since k will always be
greater than the key stored at the root, and the right child
of the root will be empty

 so, we’ll create a new root for k, and have its left link point
to the old splay tree

 this takes constant time

 The access of key 1 will then halve the path length to each
node in this bad tree

Example
7

6

5

4

3

2

1

7

6

5

4

1

2

3

Example
7

6

5

4

1

2

3

7

6

3

2

1

4

5

Example

7

6

3

2

1

4

5

7

6

1

3

2

4

5

Code for splaying

type

splay_ptr = ^splay_node

splay_node = record

element: element_type

left: splay_ptr

right: splay_ptr

parent: splay_ptr

end

SEARCH_TREE = ^ splay_node

Basic splay routine

procedure splay (current:splay_ptr)
var father : splay_ptr

begin
father := current^.parent

while father <> nil do

begin

if father^.parent = nil then

single_rotate (current)

else

double_rotate(current)

father := current^.parent

end

end

Single rotation

procedure single_rotate(x:splay_ptr)

begin

if x^.parent^.left = x then

zig_left(x)

else

zig_right(x)

end

Zig left - single rotation

between root and its left child

procedure zig_left(x: splay_ptr)

var p, B :splay_ptr

begin

p := x^.parent

B := x^.right

x^.right := p

x^.parent := nil

if B <> nil then B^.parent := p

p^.left := B

p^.parent := x

end

2-3 Trees
 Tree in which nodes that are not leaves may have

either 2 or 3 children

 By arranging both types of nodes, can make a
“perfectly balanced” tree in terms of path length

 Definition of a 2-3 tree:

 all leaves are at the same depth and contain 1 or 2 keys

 an interior node either contains one key and has two
children (a 2-node) or contains 2 keys and 3 children (a 3-
node)

 A key in an interior node is between the keys in the subtrees
of its adjacent children. For a 3-node the 2 keys fall between
the 3 subtrees.

2-3 Trees

H R

D L N U

B E J M P Q T Z

2-3 Trees
 A 2-3 tree having n keys can have height at

most log2n. This occurs when all of the nodes
are 2-nodes, and we have a perfect binary tree

 A 2-3 tree in which all of the nodes are 3-nodes
and which contains n keys will have height
log3n.

 Searching a 2-3 tree involves only trivial
modifications to the BST algorithm to handle
the 3-nodes. But insertion and deletion are
complicated

Insertion into 2-3 trees

 Search for the leaf where the key belongs,
remembering the path to that leaf.

 If the leaf contains only one key, add the key
to that leaf and stop (example - add F to the
2-3 tree)

Insertion into 2-3 trees
 If the leaf is full, split it into two 2-nodes - using

the first and third key - and pass the middle key
up to the parent to separate the two keys left in
the leaf.

 If the parent was a 2-node, it is changed into a 3-
node and we stop. Otherwise, we repeat the
splitting step to the parent, promoting one of its
keys up another level in the tree.

 If the root must be split, a new root is created
and the height of the tree is increased by one.

Example - insertion of O
H R

D L N U

B E J M P Q T Z

H R

D L N U

B E J M O P Q T Z

H R

D L N U

B E J M O P Q T Z

H R

D L N P U

B E J M T ZO Q

H R

D L N P U

B E J M T ZO Q

H N R

D L U

B E J M T ZO Q

P

H N R

D L U

B E J M T ZO Q

P

D L U

B E J M T ZO Q

P

H R

N 2-3 Trees ALWAYS
grow from the root
UPWARDS

Deletion from 2-3 trees
 [Always delete from a leaf] If the key to be deleted is

in a leaf, remove it. If not, then the key’s inorder

successor is in a leaf (it is the leftmost node in the
“right” subtree of that key). Replace the key by its
inorder successor and remove the inorder successor
from the leaf in which it was found.

H R

D L N U

B E J M P Q T Z

D M N

B E J P Q

delete L

Deletion from 2-3 trees

 Suppose we deleted a key from node . If  still
has one key, stop. If  has no keys:

 If  is the root, delete it. If  had a child, this child
becomes the new root.

Deletion from 2-3 trees

  must have one sibling (only the root doesn’t).

If  has a sibling ’ immediately to its left or right
that has 2 keys, then let S be the key in the parent
that separates  and ’. Move S to  and replace
it in the parent by the key in ’ that is adjacent to
.

If  and ’ are interior nodes, then also move one
child of ’ to be a child of .  and ’ end up
with one key each, rather than 0 and 2, and the
algorithm is complete.

  has a sibling ’ immediately to its left or
right that has 2 keys

 N is the key in the parent that separates 
and ’

 Move N to  and replace it in the parent by
the key in ’ that is adjacent to  = P.

D M N

B E J P Q

D M P

B E J N Q

 ’

Deletion from 2-3 trees

 Continuing case of  having no keys and no
chance of borrowing from sibling
 [ has a sibling ’ to its left or right that has only

one key]. Let  be the parent of  and ’, and let

S be the key in  that separates them.
Consolidate S and the one key in ’ into a new 3-
node which replaces both  and ’. This reduces

by one both the number of keys in  and the
number of children of . Set  to  and go back
to the second major step of the algorithm.

Example - deletion of E
H R

D L N U

B E J M P Q T Z

H R

L N U

B D J M P Q T Z

’

parent Let  be the parent
of  and ’, and let S

be the key in  that
separates them.
Consolidate S and
the one key in ’
into a new 3-node
which replaces both
 and ’.

Example - deletion of E

H R

L N U

B D J M P Q T Z

L R

N U

B D J M P Q T Z

 ’

H

This reduces by one
both the number of
keys in  and the
number of children of
. Set  to  and go
back to the second
major step of the
algorithm. In this case
we can move a key
from ’
up to the parent and
one from the parent
down.

More examples - delete R
H R

D L N U

B E J M P Q T Z

H T

D L N U

B E J M P Q Z

Delete R
H T

D L N

UB E J M P Q Z

U was the key in parent
that separated siblings;
combine U with Z and
remove U from parent -
underflows parent.

Rotate key from
sibling to parent,
and borrow key
from parent;
readjust pointers to
children

H N

D L

UB E J M P Q Z

T

Insert R
H

D L

B E J M P Q R U Z

T

N

H

D L

B E J M P U Z

T Q

N

R

Split overflow
node into two
nodes, promoting
middle key to
parent.

Difficulties with
implementing 2-3 trees

 2-nodes and 3-nodes have to be handled as
separate cases

 have to resort to variant records, for
example, but these can waste storage

 can we find a way to model 2-3 trees using
regular binary trees?

 red/black trees

Skip lists
 How can we combine the simplicity of binary

search over sequential allocation with the ease
of insertions/deletions of linked lists?

 Skip lists - hierarchies of linked lists

 List array (bad solution on the way to skip lists)

1) linked list at the bottom contains all of the
elements of the set

2) linked list at next level links every other element
together.

3) linked list at i'th level links every 2**(i-1)
elements

List array -
example

0

1

2

3

am bo do fa ka lo su to

Searching in a list array

 Start at the highest level

 Scan the elements until encountering a
node, p, whose value is greater than or
equal to the key sought, k.

 If k is the value of node p, done;
otherwise descend one level from the
predecessor of p.

Searching in a list array

 If we reach the end of the lowest level
list, the search fails.

 If list contains n elements, then search
takes at most 2 logn operations since
there are logn lists and at most 2
elements per list are examined before
descending.

Search
example

0

1

2

3

am bo do fa ka lo su to

• Searching for RA follows the bold links.

Disadvantages of list arrays
 Consider the problem of updating the list array

 Inserting an element at the beginning of the list
involves changing the level of every element in the
list

 Solution - relax the constraint that we skip a constant
number of elements at each level of the list array, as
long as the average number of nodes skipped is about
right.

 Skip lists - list array built by generating the skip
increment randomly. Design insertion routine to be
twice as likely to generate a skip at level i than at
level i+1

Insertion into a skip list

 Goal - insert a node with key k into a skip
list

1) Search for k in the skip list, remembering the
link fields traversed during the search at each
level.

2) If the search is unsuccessful, position where
k should be inserted at lowest level has been
found - make the insertion

Insertion into a skip list

3) Generate a random number in [0,1] and:

a) if the number is less than .5, then exit

b) if the number is greater than or equal to .5,
ascend to level i+1 and insert k at this level.

c) Repeat this step if there are any more
levels in the skip list.

4) Note that the probability of ascending n levels
is 1/2**n, so that the skip list cannot grow very
high. Usually a prior max level is set.

Skip list example – insert
“le”

0

1

2

3

am bo do fa ka lo su to

am bo do fa ka lo su tole

