
CSMC 412
Operating Systems

Prof. Ashok K Agrawala

Synchronization

Set 9

1

Semaphore

• Invented by Edsger Dijkstra in 1962
• When working on and operating system for Electrologica X which became

THE.

• A non-negative, integer, Global variable (S)
• Initialized at set up time, and
• Two operations are allowed

• P(S) ----- Wait(S)
• Decrement S

• Wait until this operation can be carried out.

• V(S) ------Signal(S)
• Increment S

• Both operations are considered Atomic

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 2

Semaphore

• Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

• Semaphore S – integer variable

• Can only be accessed via two indivisible (atomic) operations

• wait() and signal()
• Originally called P() and V()

• Definition of the wait() operation
wait(S) {

while (S <= 0)

; // busy wait

S--;

}

• Definition of the signal() operation
signal(S) {

S++;

}

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 3

Information Implications of Semaphore
• A process has synch points

• To go past a synch point certain conditions must be true

• Conditions depend not only on ME but other processes also

• Must confirm that the conditions are true before proceeding, else have to wait.

• P(S) – Wait (S)

• If can complete this operation

• Inform others through changed value of S

• Proceed past the synch point

• If can not complete

• Wait for the event when S becomes >0

• V(S) – Signal (S)

• Inform others that I have gone past a synch point.

September 21 4Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1
• Same as a mutex lock

• Can solve various synchronization problems

• Consider P1 and P2 that require S1 to happen before S2
Create a semaphore “synch” initialized to 0
P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

• Can implement a counting semaphore S as a binary semaphore

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 5

Semaphore as General Synchronization Tool

• Counting semaphore – integer value can range over an unrestricted domain

• Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement
• Also known as mutex locks

• Can implement a counting semaphore S as a binary semaphore

• Provides mutual exclusion

Semaphore S; // initialized to 1

P(S);
CriticalSection();
V(S);

September 21 6Copyright 2018 Silberschatz, Gavin & Gagne

Implementing Counting Semaphore using
Binary Semaphore

• Data structures:

binary-semaphore S1, S2;

int C:

• Initialization:

S1 = 1

S2 = 0

C = initial value of semaphore S

September 21 7Copyright 2018 Silberschatz, Gavin & Gagne

Implementing Counting Semaphore
• wait operation

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal operation
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

September 21 8Copyright 2018 Silberschatz, Gavin & Gagne

Semaphore Implementation

• Must guarantee that no two processes can execute the
wait() and signal() on the same semaphore at the same
time

• Thus, the implementation becomes the critical section
problem where the wait and signal code are placed in the
critical section
• Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 9

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:
• value (of type integer)

• pointer to next record in the list

• Two operations:
• block – place the process invoking the operation on the appropriate waiting

queue

• wakeup – remove one of processes in the waiting queue and place it in the
ready queue

• typedef struct{

int value;

struct process *list;

} semaphore;

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 10

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 11

Deadlock and Starvation

• Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

• Starvation – indefinite blocking
• A process may never be removed from the semaphore queue in which it

is suspended

• Priority Inversion – Scheduling problem when lower-priority
process holds a lock needed by higher-priority process
• Solved via priority-inheritance protocol

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 12

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) or signal (mutex) (or
both)

• Deadlock and starvation are possible.

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 13

Monitors
• A high-level abstraction that provides a convenient and effective mechanism

for process synchronization

• Abstract data type, internal variables only accessible by code within the
procedure

• Only one process may be active within the monitor at a time

• But not powerful enough to model some synchronization schemes

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }

}

}
September 21 Copyright 2018 Silberschatz, Gavin & Gagne 14

Schematic view of a Monitor

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 15

Condition Variables

• condition x, y;

• Two operations are allowed on a condition
variable:
• x.wait() – a process that invokes the operation is

suspended until x.signal()

• x.signal() – resumes one of processes (if any) that
invoked x.wait()

• If no x.wait() on the variable, then it has no effect on
the variable

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 16

Monitor with Condition Variables

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 17

Condition Variables Choices

• If process P invokes x.signal(),and process Q is suspended in x.wait(), what
should happen next?
• Both Q and P cannot execute in parallel. If Q is resumed, then P must wait

• Options include
• Signal and wait – P waits until Q either leaves the monitor or it waits for another

condition

• Signal and continue – Q waits until P either leaves the monitor or it waits for
another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise
• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 18

Monitor Implementation Using Semaphores

• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

• Each procedure F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured
September 21 Copyright 2018 Silberschatz, Gavin & Gagne 19

Monitor Implementation – Condition Variables

• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

• The operation x.wait can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 20

Monitor Implementation (Cont.)

• The operation x.signal can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 21

Resuming Processes within a Monitor

• If several processes queued on condition x, and
x.signal() executed, which should be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form x.wait(c)
• Where c is priority number

• Process with lowest number (highest priority) is scheduled
next

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 22

• Allocate a single resource among competing processes using priority
numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);

...

access the resurce;

...

R.release;

• Where R is an instance of type ResourceAllocator

Single Resource allocation

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 23

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = FALSE;

}

}
September 21 Copyright 2018 Silberschatz, Gavin & Gagne 24

