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Objectives

• To present the concept of process 
synchronization.

• To introduce the critical-section problem, 
whose solutions can be used to ensure the 
consistency of shared data

• To present both software and hardware 
solutions of the critical-section problem

• To examine several classical process-
synchronization problems

• To explore several tools that are used to 
solve process synchronization problems
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Background

• Processes can execute concurrently
• May be interrupted at any time, partially completing execution

• Concurrent access to shared data may result in data 
inconsistency

• Maintaining data consistency requires mechanisms to ensure 
the orderly execution of cooperating processes
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Systems = Objects + Activities

• Safety is a property of objects, and groups of objects, that participate across multiple activities.

• Can be a concern at many different levels: objects, composites, components, subsystems, 
hosts, …

• Liveness is a property of activities, and groups of activities, that span across multiple objects.

• Levels: Messages, call chains, threads, sessions, scenarios, scripts workflows, use cases, 
transactions, data flows, mobile computations, …
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Violating Safety

• Data can be shared by threads

• Scheduler can interleave or overlap threads arbitrarily

• Can lead to interference
• Storage corruption (e.g. a data race/race condition)

• Violation of representation invariant

• Violation of a protocol (e.g. A occurs before B)
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How does this apply to OSs?

• Any resource that is shared could be accessed inappropriately
• Shared memory

• Kernel threads

• Processes (shared memory set up by kernel)

• Shared resources
• Printer, Video screen, Network card, …

• OS must protect shared resources
• And provide processes a means to protect their own abstractions 
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Illustration of the problem:

• Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an 
integer counter that keeps track of the number of full buffers.  
Initially, counter is set to 0. It is incremented by the producer after 
it produces a new buffer and is decremented by the consumer after it 
consumes a buffer.
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Producer 

while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE) ; 

/* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run.  Each will increment the

global count. 

Shared state
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 is pre-empted.  T2

executes, grabbing the global

counter value into y.

Shared state

y = 0

y = 0
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 0
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 completes.  T1

executes again, storing the

old counter value (1) rather

than the new one (2)!

Shared state

y = 0

y = 0
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But When I Run it Again?
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run.  Each will increment the

global count. 

Shared state
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 executes again, storing the

counter value

Shared state

y = 0
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 finishes.  T2 executes, 

grabbing the global

counter value into y.

Shared state

y = 0

y = 1
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Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 2

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 1
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What happened?

• In the first example, t1 was preempted after it read the counter but before it 
stored the new value.

• Depends on the idea of an atomic action

• Violated an object invariant

• A particular way in which the execution of two threads is interleaved is called a 
schedule.  We want to prevent this undesirable schedule.

• Undesirable schedules can be hard to reproduce, and so hard to debug.
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Race Condition

• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Question

• If you run a program with a race condition, will you always get an 
unexpected result?
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Answer

• If you run a program with a race condition, will you always get an 
unexpected result?
• No!  It depends on the scheduler

• ...and on the other threads/processes/etc that are running on the same CPU

• Race conditions are hard to find
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Disabling Interrupts

• Doesn’t work for multiprocessors

• Doesn’t permit different groups of critical sections
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Synchronization

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

Mutex_Lock (&lock);

int y = cnt;

cnt = y + 1;

Mutex_Unlock (&lock);

}

Lock, for protecting 

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock

Copyright 2018 Silberschatz, Gavin & Gagne 27



Java-style synchronized block

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

synchronized (lock) {

int y = cnt;

cnt = y + 1;

}

}

Lock, for protecting 

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 acquires the lock
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 reads cnt into y

y = 0
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 is pre-empted.

T2 attempts to

acquire the lock but fails

because it’s held by

T1, so it blocks

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 31



Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 runs, assigning

to cnt

y = 0
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 releases the lock

and terminates

y = 0
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 now can acquire

the lock.

y = 0
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 reads cnt into y.

y = 0

y = 1
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Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 2Shared state

T2 assigns cnt, 

then releases the lock

y = 0

y = 1
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Critical Section

• A critical section is a piece of code that should 
not be interleaved with code from another 
thread

• Mutually Exclusive Execution

ATOMIC ACTION

• Locks

• Only one thread can “acquire” a mutex

• Other threads block until they can 
acquire it

• Used for implementing critical sections
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Thread A
.
Non CS.

-----
CS
----
Non CS

Thread B
.
Non CS.
-----
CS
----

Non CS
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Mutex (Lock) Policies

• What if a thread already holds the mutex it’s trying to acquire?

• Re-entrant  mutexes: The thread can reacquire the same lock many times.  Lock is released 
when object unlocked the corresponding number of times

• This is the case for Java

• Non-reentrant: Deadlock! (defined soon.)

• This is the case in GeekOS

• What happens if a thread is killed while holding a mutex?  Or if it just forgets to release it

• Could lead to deadlock
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Java Synchronized statement

• synchronized (obj) { statements }

• Obtains the lock on obj before executing statements in block
• obj can be any Object

• Releases the lock when the statement block completes
• Either normally, or due to a return, break, or exception being thrown in the 

block

• Can’t forget to release the lock!
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Synchronization not a Panacea

• Two threads can block on locks held by the 
other; this is called deadlock

Object A = new Object();

Object B = new Object();

T1.run() {

synchronized (A) {

synchronized (B) {

…

}

}

}

T2.run() {

synchronized (B) {

synchronized (A) {

…

}

}

}
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Deadlock

• Quite possible to create code that deadlocks

• Thread 1 holds lock on A

• Thread 2 holds lock on B

• Thread 1 is trying to acquire a lock on B

• Thread 2 is trying to acquire a lock on A

• Deadlock!

• Not easy to detect when deadlock has occurred

• other than by the fact that nothing is happening
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Object A = new Object();

Object B = new Object();

T1.run() {

synchronized (A) {

synchronized (B) {

…

}

}

}

T2.run() {

synchronized (B) {

synchronized (A) {

…

}

}

}
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Deadlock: Wait graphs

A T1 Thread T1 holds lock A

BT2
Thread T2 attempting to 

acquire lock B

Deadlock occurs when there is a cycle in the graph
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Wait graph example

A T1

BT2

T1 holds lock on A

T2 holds lock on B

T1 is trying to acquire a lock on B

T2 is trying to acquire a lock on A
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Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has a critical section segment of code
• Process may be changing common variables, updating table, writing file, 

etc.

• When one process is in its critical section, no other may be in its critical 
section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in 
entry section, may follow critical section with exit section, then 
remainder section
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Critical Section

• General structure of process Pi  
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Solution to Critical-Section Problem

1.Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2.Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter 
the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its 
critical section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the N processes
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Two-task Solution

• Two tasks, T0 and T1 (Ti and Tj)

• Three solutions presented.  
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Algorithm 1

• Threads share a common integer variable turn
• Turn takes values 0 and 1

• Initialize turn to 0

• Entry Section for thread i
• If turn==i, thread i is allowed to proceed, else yield

• Exit Section for thread I
• turn== (1-i)
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Algorithm 1

• Satisfies mutual exclusion but not progress.

• Processes are forced to enter their critical sections alternately.

• One process not in its critical section thus prevents the other from entering its 
critical section.
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Algorithm 2

• Boolean flags to indicate thread’s 
interest in entering critical section

• Entry Code
if (t == 0) {

flag0 = true;
while(flag1 == true)

Thread.yield();
}
else {

flag1 = true;
while (flag0 == true)

Thread.yield();

• Exit Code
if (t == 0) 

flag0 = false;

else

flag1 = false;

• Initialize
• Both flags to false
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Algorithm 2

• Satisfies mutual exclusion, but not progress requirement.

• Both processes can end up setting their flag[] variable to true, and thus 
neither process enters its critical section!
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Algorithm 3 Peterson’s Solution

• Combine ideas from 1 and 2

Copyright 2018 Silberschatz, Gavin & Gagne 52



Peterson’s Solution

• Good algorithmic  description of solving the problem

• Two process solution

• Assume that the load and store machine-language 
instructions are atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn; 

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter 
the critical section

• The flag array is used to indicate if a process is ready 
to enter the critical section. flag[i] = true implies 
that process Pi is ready!
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Algorithm for Process Pi

do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

critical section 

flag[i] = false; 

remainder section 

} while (true); 
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Peterson’s Solution (Cont.)

• Provable that the three  CS requirement are met:

1.   Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2.   Progress requirement is satisfied

3.   Bounded-waiting requirement is met
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Algorithm 3

• Meets all three requirements; solves the critical-section problem for two 
processes.

• One process is always guaranteed to get into its critical section.

• Processes are forced to take turns when they both want to get in.
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Bakery Algorithm

• Before entering its critical section, process 
receives a number. Holder of the smallest 
number enters the critical section.

• If processes Pi and Pj receive the same 
number, if i < j, then Pi is served first; else Pj

is served first.

• The numbering scheme always generates 
numbers in increasing order of 
enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes
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Bakery Algorithm 

• Notation < lexicographical order (ticket #, process id #)
• (a,b) < c,d) if a < c or if a = c and b < d

• max (a0,…, an-1) is a number, k, such that k  ai for i - 0, 
…, n – 1

• Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to false and 0 respectively
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Bakery Algorithm 

do { 
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ; 
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);
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Critical-Section Handling in OS 

Two approaches depending on if kernel is 
preemptive or non- preemptive 
• Preemptive – allows preemption of process 

when running in kernel mode

• Non-preemptive – runs until exits kernel mode, 
blocks, or voluntarily yields CPU
• Essentially free of race conditions in kernel mode
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Synchronization Hardware

• Many systems provide hardware support for 
implementing the critical section code.

• All solutions below based on idea of locking
• Protecting critical regions via locks

• Uniprocessors – could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware 
instructions

• Atomic = non-interruptible

• Either test memory word and set value
• Or swap contents of two memory words
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Solution to Critical-section Problem Using Locks

do { 

acquire lock 

critical section 

release lock 

remainder section 

} while (TRUE); 
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test_and_set  Instruction 

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

4.In x86 the instruction is BTS  
1. Specify the bit in a string which is SET and its old value is stored in CF flag
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Solution using test_and_set()

Shared Boolean variable lock, initialized to FALSE

Solution:

do {
while (test_and_set(&lock)) 

; /* do nothing */ 

/* critical section */ 

lock = false; 

/* remainder section */ 

} while (true);
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compare_and_swap Instruction

Definition:
int compare _and_swap(int *value, int expected, int new_value) { 

int temp = *value; 

if (*value == expected) 

*value = new_value; 

return temp; 

} 

1.Executed atomically
2.Returns the original value of passed parameter “value”
3.Set  the variable “value”  the value of the passed 

parameter “new_value” but only if “value” 
==“expected”. That is, the swap takes place only under 
this condition.
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Solution using compare_and_swap

• Shared integer  “lock” initialized to 0; 

• Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0) 

; /* do nothing */ 

/* critical section */ 

lock = 0; 

/* remainder section */ 

} while (true); 
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Bounded waiting mutual exclusion 
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while (true) {
waiting[i] = true;
key = 1;
while (waiting[i] && key == 1)

key = compare and swap(&lock,0,1);
waiting[i] = false;

/* critical section */
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = 0;
else

waiting[j] = false;
/* remainder section */

}

boolean waiting[n];
int lock;

• Pi can enter its CS only if
• Either waiting [i] is false, or
• Key =0

• Key can become 0 only if compare 
and swap is executed 

• First process to execute compare and 
swap will find Key = 0, all others must 
wait.

• Variable waiting [i] becomes false 
only if another process leaves its CS
• Only one waiting[i] is set to false


