
CSMC 412
Operating Systems

Prof. Ashok K Agrawala

Synchronization Tools

Set 8

Copyright 2018 Silberschatz, Gavin & Gagne 1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization Tools

Objectives

• To present the concept of process
synchronization.

• To introduce the critical-section problem,
whose solutions can be used to ensure the
consistency of shared data

• To present both software and hardware
solutions of the critical-section problem

• To examine several classical process-
synchronization problems

• To explore several tools that are used to
solve process synchronization problems

Copyright 2018 Silberschatz, Gavin & Gagne 3

Background

• Processes can execute concurrently
• May be interrupted at any time, partially completing execution

• Concurrent access to shared data may result in data
inconsistency

• Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes

Copyright 2018 Silberschatz, Gavin & Gagne 4

Systems = Objects + Activities

• Safety is a property of objects, and groups of objects, that participate across multiple activities.

• Can be a concern at many different levels: objects, composites, components, subsystems,
hosts, …

• Liveness is a property of activities, and groups of activities, that span across multiple objects.

• Levels: Messages, call chains, threads, sessions, scenarios, scripts workflows, use cases,
transactions, data flows, mobile computations, …

Copyright 2018 Silberschatz, Gavin & Gagne 5

Violating Safety

• Data can be shared by threads

• Scheduler can interleave or overlap threads arbitrarily

• Can lead to interference
• Storage corruption (e.g. a data race/race condition)

• Violation of representation invariant

• Violation of a protocol (e.g. A occurs before B)

Copyright 2018 Silberschatz, Gavin & Gagne 6

How does this apply to OSs?

• Any resource that is shared could be accessed inappropriately
• Shared memory

• Kernel threads

• Processes (shared memory set up by kernel)

• Shared resources
• Printer, Video screen, Network card, …

• OS must protect shared resources
• And provide processes a means to protect their own abstractions

Copyright 2018 Silberschatz, Gavin & Gagne 7

Illustration of the problem:

• Suppose that we wanted to provide a solution to the consumer-
producer problem that fills all the buffers. We can do so by having an
integer counter that keeps track of the number of full buffers.
Initially, counter is set to 0. It is incremented by the producer after
it produces a new buffer and is decremented by the consumer after it
consumes a buffer.

Copyright 2018 Silberschatz, Gavin & Gagne 8

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

/* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Copyright 2018 Silberschatz, Gavin & Gagne 9

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

Copyright 2018 Silberschatz, Gavin & Gagne 10

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run. Each will increment the

global count.

Shared state

Copyright 2018 Silberschatz, Gavin & Gagne 11

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 12

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 is pre-empted. T2

executes, grabbing the global

counter value into y.

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 13

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 14

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T2 completes. T1

executes again, storing the

old counter value (1) rather

than the new one (2)!

Shared state

y = 0

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 15

But When I Run it Again?

Copyright 2018 Silberschatz, Gavin & Gagne 16

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

Start: both threads ready to

run. Each will increment the

global count.

Shared state

Copyright 2018 Silberschatz, Gavin & Gagne 17

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 0

T1 executes, grabbing

the global counter value into y.

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 18

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 executes again, storing the

counter value

Shared state

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 19

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 1

T1 finishes. T2 executes,

grabbing the global

counter value into y.

Shared state

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne 20

Data Race Example
static int cnt = 0;

t1.run() {

int y = cnt;

cnt = y + 1;

}

t2.run() {

int y = cnt;

cnt = y + 1;

}

cnt = 2

T2 executes, storing the

incremented cnt value.

Shared state

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne 21

What happened?

• In the first example, t1 was preempted after it read the counter but before it
stored the new value.

• Depends on the idea of an atomic action

• Violated an object invariant

• A particular way in which the execution of two threads is interleaved is called a
schedule. We want to prevent this undesirable schedule.

• Undesirable schedules can be hard to reproduce, and so hard to debug.

Copyright 2018 Silberschatz, Gavin & Gagne 22

Race Condition

• counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

• counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Copyright 2018 Silberschatz, Gavin & Gagne 23

Question

• If you run a program with a race condition, will you always get an
unexpected result?

Copyright 2018 Silberschatz, Gavin & Gagne 24

Answer

• If you run a program with a race condition, will you always get an
unexpected result?
• No! It depends on the scheduler

• ...and on the other threads/processes/etc that are running on the same CPU

• Race conditions are hard to find

Copyright 2018 Silberschatz, Gavin & Gagne 25

Disabling Interrupts

• Doesn’t work for multiprocessors

• Doesn’t permit different groups of critical sections

Copyright 2018 Silberschatz, Gavin & Gagne 26

Synchronization

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

Mutex_Lock (&lock);

int y = cnt;

cnt = y + 1;

Mutex_Unlock (&lock);

}

Lock, for protecting

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock

Copyright 2018 Silberschatz, Gavin & Gagne 27

Java-style synchronized block

static int cnt = 0;

struct Mutex lock;

Mutex_Init(&lock);

void run() {

synchronized (lock) {

int y = cnt;

cnt = y + 1;

}

}

Lock, for protecting

The shared state

Acquires the lock;

Only succeeds if not

held by another

thread

Releases the lock

Copyright 2018 Silberschatz, Gavin & Gagne 28

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 acquires the lock

Copyright 2018 Silberschatz, Gavin & Gagne 29

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 reads cnt into y

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 30

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 0Shared state

T1 is pre-empted.

T2 attempts to

acquire the lock but fails

because it’s held by

T1, so it blocks

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 31

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 runs, assigning

to cnt

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 32

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T1 releases the lock

and terminates

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 33

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 now can acquire

the lock.

y = 0

Copyright 2018 Silberschatz, Gavin & Gagne 34

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 1Shared state

T2 reads cnt into y.

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne 35

Applying synchronization
int cnt = 0;

t1.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

t2.run() {

synchronized(lock) {

int y = cnt;

cnt = y + 1;

}

}

cnt = 2Shared state

T2 assigns cnt,

then releases the lock

y = 0

y = 1

Copyright 2018 Silberschatz, Gavin & Gagne 36

Critical Section

• A critical section is a piece of code that should
not be interleaved with code from another
thread

• Mutually Exclusive Execution

ATOMIC ACTION

• Locks

• Only one thread can “acquire” a mutex

• Other threads block until they can
acquire it

• Used for implementing critical sections

Copyright 2018 Silberschatz, Gavin & Gagne

Thread A
.
Non CS.

CS

Non CS

Thread B
.
Non CS.

CS

Non CS

37

Mutex (Lock) Policies

• What if a thread already holds the mutex it’s trying to acquire?

• Re-entrant mutexes: The thread can reacquire the same lock many times. Lock is released
when object unlocked the corresponding number of times

• This is the case for Java

• Non-reentrant: Deadlock! (defined soon.)

• This is the case in GeekOS

• What happens if a thread is killed while holding a mutex? Or if it just forgets to release it

• Could lead to deadlock

Copyright 2018 Silberschatz, Gavin & Gagne 38

Java Synchronized statement

• synchronized (obj) { statements }

• Obtains the lock on obj before executing statements in block
• obj can be any Object

• Releases the lock when the statement block completes
• Either normally, or due to a return, break, or exception being thrown in the

block

• Can’t forget to release the lock!

Copyright 2018 Silberschatz, Gavin & Gagne 39

Synchronization not a Panacea

• Two threads can block on locks held by the
other; this is called deadlock

Object A = new Object();

Object B = new Object();

T1.run() {

synchronized (A) {

synchronized (B) {

…

}

}

}

T2.run() {

synchronized (B) {

synchronized (A) {

…

}

}

}

Copyright 2018 Silberschatz, Gavin & Gagne 40

Deadlock

• Quite possible to create code that deadlocks

• Thread 1 holds lock on A

• Thread 2 holds lock on B

• Thread 1 is trying to acquire a lock on B

• Thread 2 is trying to acquire a lock on A

• Deadlock!

• Not easy to detect when deadlock has occurred

• other than by the fact that nothing is happening

Copyright 2018 Silberschatz, Gavin & Gagne

Object A = new Object();

Object B = new Object();

T1.run() {

synchronized (A) {

synchronized (B) {

…

}

}

}

T2.run() {

synchronized (B) {

synchronized (A) {

…

}

}

}

41

Deadlock: Wait graphs

A T1 Thread T1 holds lock A

BT2
Thread T2 attempting to

acquire lock B

Deadlock occurs when there is a cycle in the graph

Copyright 2018 Silberschatz, Gavin & Gagne 42

Wait graph example

A T1

BT2

T1 holds lock on A

T2 holds lock on B

T1 is trying to acquire a lock on B

T2 is trying to acquire a lock on A

Copyright 2018 Silberschatz, Gavin & Gagne 43

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has a critical section segment of code
• Process may be changing common variables, updating table, writing file,

etc.

• When one process is in its critical section, no other may be in its critical
section

• Critical section problem is to design protocol to solve this

• Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section, then
remainder section

Copyright 2018 Silberschatz, Gavin & Gagne 44

Critical Section

• General structure of process Pi

Copyright 2018 Silberschatz, Gavin & Gagne 45

Solution to Critical-Section Problem

1.Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2.Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter
the critical section next cannot be postponed indefinitely

3.Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its
critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

Copyright 2018 Silberschatz, Gavin & Gagne 46

Two-task Solution

• Two tasks, T0 and T1 (Ti and Tj)

• Three solutions presented.

Copyright 2018 Silberschatz, Gavin & Gagne 47

Algorithm 1

• Threads share a common integer variable turn
• Turn takes values 0 and 1

• Initialize turn to 0

• Entry Section for thread i
• If turn==i, thread i is allowed to proceed, else yield

• Exit Section for thread I
• turn== (1-i)

Copyright 2018 Silberschatz, Gavin & Gagne 48

Algorithm 1

• Satisfies mutual exclusion but not progress.

• Processes are forced to enter their critical sections alternately.

• One process not in its critical section thus prevents the other from entering its
critical section.

Copyright 2018 Silberschatz, Gavin & Gagne 49

Algorithm 2

• Boolean flags to indicate thread’s
interest in entering critical section

• Entry Code
if (t == 0) {

flag0 = true;
while(flag1 == true)

Thread.yield();
}
else {

flag1 = true;
while (flag0 == true)

Thread.yield();

• Exit Code
if (t == 0)

flag0 = false;

else

flag1 = false;

• Initialize
• Both flags to false

Copyright 2018 Silberschatz, Gavin & Gagne 50

Algorithm 2

• Satisfies mutual exclusion, but not progress requirement.

• Both processes can end up setting their flag[] variable to true, and thus
neither process enters its critical section!

Copyright 2018 Silberschatz, Gavin & Gagne 51

Algorithm 3 Peterson’s Solution

• Combine ideas from 1 and 2

Copyright 2018 Silberschatz, Gavin & Gagne 52

Peterson’s Solution

• Good algorithmic description of solving the problem

• Two process solution

• Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

• The two processes share two variables:
• int turn;

• Boolean flag[2]

• The variable turn indicates whose turn it is to enter
the critical section

• The flag array is used to indicate if a process is ready
to enter the critical section. flag[i] = true implies
that process Pi is ready!

Copyright 2018 Silberschatz, Gavin & Gagne 53

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne 54

Peterson’s Solution (Cont.)

• Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Copyright 2018 Silberschatz, Gavin & Gagne 55

Algorithm 3

• Meets all three requirements; solves the critical-section problem for two
processes.

• One process is always guaranteed to get into its critical section.

• Processes are forced to take turns when they both want to get in.

Copyright 2018 Silberschatz, Gavin & Gagne 56

Bakery Algorithm

• Before entering its critical section, process
receives a number. Holder of the smallest
number enters the critical section.

• If processes Pi and Pj receive the same
number, if i < j, then Pi is served first; else Pj

is served first.

• The numbering scheme always generates
numbers in increasing order of
enumeration; i.e., 1,2,3,3,3,3,4,5...

Critical section for n processes

Copyright 2018 Silberschatz, Gavin & Gagne 57

Bakery Algorithm

• Notation < lexicographical order (ticket #, process id #)
• (a,b) < c,d) if a < c or if a = c and b < d

• max (a0,…, an-1) is a number, k, such that k ai for i - 0,
…, n – 1

• Shared data

boolean choosing[n];

int number[n];

Data structures are initialized to false and 0 respectively

Copyright 2018 Silberschatz, Gavin & Gagne 58

Bakery Algorithm

do {
choosing[i] = true;
number[i] = max(number[0], number[1], …, number [n – 1])+1;
choosing[i] = false;
for (j = 0; j < n; j++) {

while (choosing[j]) ;
while ((number[j] != 0) && (number[j,j] < number[i,i])) ;

}
critical section

number[i] = 0;
remainder section

} while (1);

Copyright 2018 Silberschatz, Gavin & Gagne 59

Critical-Section Handling in OS

Two approaches depending on if kernel is
preemptive or non- preemptive
• Preemptive – allows preemption of process

when running in kernel mode

• Non-preemptive – runs until exits kernel mode,
blocks, or voluntarily yields CPU
• Essentially free of race conditions in kernel mode

Copyright 2018 Silberschatz, Gavin & Gagne 60

Synchronization Hardware

• Many systems provide hardware support for
implementing the critical section code.

• All solutions below based on idea of locking
• Protecting critical regions via locks

• Uniprocessors – could disable interrupts
• Currently running code would execute without preemption
• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• Modern machines provide special atomic hardware
instructions

• Atomic = non-interruptible

• Either test memory word and set value
• Or swap contents of two memory words

Copyright 2018 Silberschatz, Gavin & Gagne 61

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

Copyright 2018 Silberschatz, Gavin & Gagne 62

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1.Executed atomically

2.Returns the original value of passed parameter

3.Set the new value of passed parameter to “TRUE”.

4.In x86 the instruction is BTS
1. Specify the bit in a string which is SET and its old value is stored in CF flag

Copyright 2018 Silberschatz, Gavin & Gagne 63

Solution using test_and_set()

Shared Boolean variable lock, initialized to FALSE

Solution:

do {
while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne 64

compare_and_swap Instruction

Definition:
int compare _and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1.Executed atomically
2.Returns the original value of passed parameter “value”
3.Set the variable “value” the value of the passed

parameter “new_value” but only if “value”
==“expected”. That is, the swap takes place only under
this condition.

Copyright 2018 Silberschatz, Gavin & Gagne 65

Solution using compare_and_swap

• Shared integer “lock” initialized to 0;

• Solution:

do {

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

} while (true);

Copyright 2018 Silberschatz, Gavin & Gagne 66

Bounded waiting mutual exclusion

Copyright 2018 Silberschatz, Gavin & Gagne 67

while (true) {
waiting[i] = true;
key = 1;
while (waiting[i] && key == 1)

key = compare and swap(&lock,0,1);
waiting[i] = false;

/* critical section */
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = 0;
else

waiting[j] = false;
/* remainder section */

}

boolean waiting[n];
int lock;

• Pi can enter its CS only if
• Either waiting [i] is false, or
• Key =0

• Key can become 0 only if compare
and swap is executed

• First process to execute compare and
swap will find Key = 0, all others must
wait.

• Variable waiting [i] becomes false
only if another process leaves its CS
• Only one waiting[i] is set to false

