
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

© 2021 Ashok Agrawala

Processes

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Processes

Objectives

• To introduce the notion of a process -- a
program in execution, which forms the
basis of all computation

• To describe the various features of
processes, including scheduling, creation
and termination, and communication

• To explore interprocess communication
using shared memory and message
passing

• To describe communication in client-
server systems

Copyright 2018 Silberschatz, Gavin & Gagne 3

Process Concept

• An operating system executes a variety of programs:
– Batch system – jobs
– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost
interchangeably

• Process – a program in execution; process execution must
progress in sequential fashion

• Multiple parts
– The program code, also called text section
– Current activity including program counter, processor

registers
– Stack containing temporary data

• Function parameters, return addresses, local variables

– Data section containing global variables
– Heap containing memory dynamically allocated during run

time

Copyright 2018 Silberschatz, Gavin & Gagne 4

Process Concept (Cont.)

• Program is passive entity stored on disk
(executable file), process is active
– Program becomes process when

executable file loaded into memory

• Execution of program started via GUI
mouse clicks, command line entry of its
name, etc

• One program can be several processes
– Consider multiple users executing the

same program

Copyright 2018 Silberschatz, Gavin & Gagne 5

Process in Memory

Copyright 2018 Silberschatz, Gavin & Gagne 6

Process State

• As a process executes, it changes state
– new: The process is being created
– running: Instructions are being executed
– waiting: The process is waiting for some event

to occur
– ready: The process is waiting to be assigned to

a processor
– terminated: The process has finished execution

Copyright 2018 Silberschatz, Gavin & Gagne 7

Diagram of Process State

Copyright 2018 Silberschatz, Gavin & Gagne 8

Process Control Block (PCB)

Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of

instruction to next execute
• CPU registers – contents of all process-

centric registers
• CPU scheduling information- priorities,

scheduling queue pointers
• Memory-management information –

memory allocated to the process
• Accounting information – CPU used,

clock time elapsed since start, time
limits

• I/O status information – I/O devices
allocated to process, list of open files

Copyright 2018 Silberschatz, Gavin & Gagne 9

CPU Switch From Process to Process

Copyright 2018 Silberschatz, Gavin & Gagne 10

Threads

• So far, process has a single thread of
execution

• Consider having multiple program
counters per process

– Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread
details, multiple program counters in PCB

Copyright 2018 Silberschatz, Gavin & Gagne 11

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */

struct mm_struct *mm; /* address space of this process */

Copyright 2018 Silberschatz, Gavin & Gagne 12

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU for time sharing

• Process scheduler selects among available
processes for next execution on CPU

• Maintains scheduling queues of processes
– Job queue – set of all processes in the system
– Ready queue – set of all processes residing in

main memory, ready and waiting to execute
– Device queues – set of processes waiting for an

I/O device
– Processes migrate among the various queues

Copyright 2018 Silberschatz, Gavin & Gagne 13

Ready Queue And Various I/O Device Queues

Copyright 2018 Silberschatz, Gavin & Gagne 14

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

Copyright 2018 Silberschatz, Gavin & Gagne 15

Schedulers

• Short-term scheduler (or CPU scheduler) – selects which process should be
executed next and allocates CPU

– Sometimes the only scheduler in a system

– Short-term scheduler is invoked frequently (milliseconds) (must be fast)

• Long-term scheduler (or job scheduler) – selects which processes should be
brought into the ready queue

– Long-term scheduler is invoked infrequently (seconds, minutes) (may be
slow)

– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than computations, many
short CPU bursts

– CPU-bound process – spends more time doing computations; few very long
CPU bursts

• Long-term scheduler strives for good process mix

Copyright 2018 Silberschatz, Gavin & Gagne 16

Addition of Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple

programming needs to decrease

Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

Copyright 2018 Silberschatz, Gavin & Gagne 17

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow only
one process to run, others suspended

• Due to screen real estate, user interface limits iOS provides
for a
– Single foreground process- controlled via user interface
– Multiple background processes– in memory, running, but not

on the display, and with limits
– Limits include single, short task, receiving notification of

events, specific long-running tasks like audio playback

• Android runs foreground and background, with fewer limits
– Background process uses a service to perform tasks
– Service can keep running even if background process is

suspended
– Service has no user interface, small memory use

Copyright 2018 Silberschatz, Gavin & Gagne 18

Context Switch

• When CPU switches to another process, the
system must save the state of the old process and
load the saved state for the new process via a
context switch

• Context of a process represented in the PCB
• Context-switch time is overhead; the system does

no useful work while switching
– The more complex the OS and the PCB ➔ the longer

the context switch

• Time dependent on hardware support
– Some hardware provides multiple sets of registers

per CPU ➔multiple contexts loaded at once

Copyright 2018 Silberschatz, Gavin & Gagne 19

Operations on Processes

• System must provide mechanisms for:

– process creation,

– process termination,

– and so on

Copyright 2018 Silberschatz, Gavin & Gagne 20

Process Creation

• Parent process create children
processes, which, in turn create other
processes, forming a tree of processes

• Generally, process identified and
managed via a process identifier (pid)

• Resource sharing options
– Parent and children share all resources
– Children share subset of parent’s resources
– Parent and child share no resources

• Execution options
– Parent and children execute concurrently
– Parent waits until children terminate

Copyright 2018 Silberschatz, Gavin & Gagne 21

A Tree of Processes in Linux

init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

Copyright 2018 Silberschatz, Gavin & Gagne 22

Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork() system call creates new process

– exec() system call used after a fork()

to replace the process’memory space
with a new program

Copyright 2018 Silberschatz, Gavin & Gagne 23

C Program Forking Separate Process

Copyright 2018 Silberschatz, Gavin & Gagne 24

Creating a Separate Process via Windows API

• CreateProcess() Fn

• Need to specify the

program to load

• Requires 10 parameters

• STARTUPINFO

• PROCESS_INFO

Copyright 2018 Silberschatz, Gavin & Gagne 25

Process Termination

• Process executes last statement and then asks the
operating system to delete it using the exit()
system call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating

system

• Parent may terminate the execution of children
processes using the abort() system call. Some
reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does

not allow a child to continue if its parent terminates

Copyright 2018 Silberschatz, Gavin & Gagne 26

Process Termination

• Some operating systems do not allow child to exist if its
parent has terminated. If a process terminates, then all its
children must also be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child
process by using the wait()system call. The call returns
status information and the pid of the terminated process

pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a
zombie

• If parent terminated without invoking wait , process is an
orphan

Copyright 2018 Silberschatz, Gavin & Gagne 27

Multiprocess Architecture – Chrome Browser

• Many web browsers ran as single process (some still
do)
– If one web site causes trouble, entire browser can hang or

crash

• Google Chrome Browser is multiprocess with 3
different types of processes:
– Browser process manages user interface, disk and

network I/O
– Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website
opened
• Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits

– Plug-in process for each type of plug-in

Copyright 2018 Silberschatz, Gavin & Gagne 28

Interprocess Communication

• Processes within a system may be
independent or cooperating

• Cooperating process can affect or be
affected by other processes, including
sharing data

• Cooperating processes need interprocess
communication (IPC)

• Two models of IPC
– Shared memory

– Message passing

Copyright 2018 Silberschatz, Gavin & Gagne 29

Communications Models

(a) Message passing. (b) shared memory.

Copyright 2018 Silberschatz, Gavin & Gagne 30

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• Cooperating process can affect or be
affected by the execution of another process

• Advantages of process cooperation

– Information sharing

– Computation speed-up

– Modularity

– Convenience

Copyright 2018 Silberschatz, Gavin & Gagne 31

Producer-Consumer Problem

• Paradigm for cooperating processes,
producer process produces
information that is consumed by a
consumer process

– unbounded-buffer places no practical
limit on the size of the buffer

– bounded-buffer assumes that there is
a fixed buffer size

Producer ConsumerBuffer

Copyright 2018 Silberschatz, Gavin & Gagne 32

Bounded-Buffer – Shared-Memory Solution

• Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

• Solution is correct, but can only use BUFFER_SIZE-1 elements

Copyright 2018 Silberschatz, Gavin & Gagne 33

Bounded-Buffer – Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Copyright 2018 Silberschatz, Gavin & Gagne 34

Bounded Buffer – Consumer

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Copyright 2018 Silberschatz, Gavin & Gagne 35

Interprocess Communication – Shared Memory

• An area of memory shared among the
processes that wish to communicate

• The communication is under the
control of the users processes not the
operating system.

• Major issues is to provide mechanism
that will allow the user processes to
synchronize their actions when they
access shared memory.

• Synchronization is discussed in great
details later

Copyright 2018 Silberschatz, Gavin & Gagne 36

Interprocess Communication – Message Passing

• Mechanism for processes to
communicate and to synchronize their
actions

• Message system – processes
communicate with each other without
resorting to shared variables

• IPC facility provides two operations:
– send(message)
– receive(message)

• The message size is either fixed or
variable

Copyright 2018 Silberschatz, Gavin & Gagne 37

Message Passing (Cont.)

• If processes P and Q wish to communicate, they need
to:
– Establish a communication link between them
– Exchange messages via send/receive

• Implementation issues:
– How are links established?
– Can a link be associated with more than two processes?
– How many links can there be between every pair of

communicating processes?
– What is the capacity of a link?
– Is the size of a message that the link can accommodate

fixed or variable?
– Is a link unidirectional or bi-directional?

Copyright 2018 Silberschatz, Gavin & Gagne 38

Message Passing (Cont.)

• Implementation of communication link
– Physical:

• Shared memory

• Hardware bus

• Network

– Logical:
• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

Copyright 2018 Silberschatz, Gavin & Gagne 39

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from

process Q

• Properties of communication link
– Links are established automatically
– A link is associated with exactly one pair of

communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-

directional

Copyright 2018 Silberschatz, Gavin & Gagne 40

Indirect Communication

• Messages are directed and received from mailboxes
(also referred to as ports)
– Each mailbox has a unique id
– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common

mailbox
– A link may be associated with many processes
– Each pair of processes may share several communication

links
– Link may be unidirectional or bi-directional

Copyright 2018 Silberschatz, Gavin & Gagne 41

Indirect Communication

• Operations
– create a new mailbox (port)
– send and receive messages through mailbox
– destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to
mailbox A
receive(A, message) – receive a message
from mailbox A

Copyright 2018 Silberschatz, Gavin & Gagne 42

Indirect Communication

• Mailbox sharing
– P1, P2, and P3 share mailbox A
– P1, sends; P2 and P3 receive
– Who gets the message?

• Solutions
– Allow a link to be associated with at most two

processes
– Allow only one process at a time to execute a

receive operation
– Allow the system to select arbitrarily the

receiver. Sender is notified who the receiver
was.

Copyright 2018 Silberschatz, Gavin & Gagne 43

Synchronization

• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous

– Blocking send -- the sender is blocked until the message is
received

– Blocking receive -- the receiver is blocked until a message is
available

• Non-blocking is considered asynchronous
– Non-blocking send -- the sender sends the message and

continue
– Non-blocking receive -- the receiver receives:

A valid message, or
Null message

n Different combinations possible
l If both send and receive are blocking, we have a rendezvous

Copyright 2018 Silberschatz, Gavin & Gagne 44

Synchronization (Cont.)

Producer-consumer becomes trivial

message next_produced;

while (true) {

/* produce an item in next produced */

send(next_produced);

}

message next_consumed;

while (true) {

receive(next_consumed);

/* consume the item in next consumed */

}

Copyright 2018 Silberschatz, Gavin & Gagne 45

Buffering

• Queue of messages attached to the link.

• implemented in one of three ways

1.Zero capacity – no messages are queued on a
link.
Sender must wait for receiver (rendezvous)

2.Bounded capacity – finite length of n
messages
Sender must wait if link full

3.Unbounded capacity – infinite length
Sender never waits

Copyright 2018 Silberschatz, Gavin & Gagne 46

Communications in Client-Server Systems

• Sockets

• Remote Procedure Calls

• Pipes

• Remote Method Invocation (Java)

Copyright 2018 Silberschatz, Gavin & Gagne 53

Sockets

• A socket is defined as an endpoint for communication

• Concatenation of IP address and port – a number
included at start of message packet to differentiate
network services on a host

• The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

• Communication is between a pair of sockets

• All ports below 1024 are well known, used for standard
services

• Special IP address 127.0.0.1 (loopback) to refer to
system on which process is running

Copyright 2018 Silberschatz, Gavin & Gagne 54

Socket Communication

Copyright 2018 Silberschatz, Gavin & Gagne 55

Sockets in Java

• Three types of
sockets
– Connection-

oriented (TCP)
– Connectionless

(UDP)
– MulticastSocke
t class– data can be
sent to multiple
recipients

• Consider this “Date”
server:

Copyright 2018 Silberschatz, Gavin & Gagne 56

Remote Procedure Calls

• Remote procedure call (RPC) abstracts
procedure calls between processes on
networked systems
– Again uses ports for service differentiation

• Stubs – client-side proxy for the actual
procedure on the server

• The client-side stub locates the server and
marshalls the parameters

• The server-side stub receives this message,
unpacks the marshalled parameters, and
performs the procedure on the server

• On Windows, stub code is compiled from
specification written in Microsoft Interface
Definition Language (MIDL)

Copyright 2018 Silberschatz, Gavin & Gagne 57

Remote Procedure Calls (Cont.)

• Data representation handled via External
Data Representation (XDL) format to
account for different architectures
– Big-endian and little-endian

• Remote communication has more failure
scenarios than local
– Messages can be delivered exactly once rather

than at most once

• OS typically provides a rendezvous (or
matchmaker) service to connect client and
server

Copyright 2018 Silberschatz, Gavin & Gagne 58

Execution of RPC

Copyright 2018 Silberschatz, Gavin & Gagne 59

Pipes

• Acts as a conduit allowing two processes to
communicate

• Issues:
– Is communication unidirectional or bidirectional?
– In the case of two-way communication, is it half or full-

duplex?
– Must there exist a relationship (i.e., parent-child)

between the communicating processes?
– Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside the
process that created it. Typically, a parent process
creates a pipe and uses it to communicate with a child
process that it created.

• Named pipes – can be accessed without a parent-child
relationship.

Copyright 2018 Silberschatz, Gavin & Gagne 60

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-
consumer style
Producer writes to one end (the write-end of the pipe)
Consumer reads from the other end (the read-end of the pipe)
Ordinary pipes are therefore unidirectional
Require parent-child relationship between communicating processes

Windows calls these anonymous pipes
See Unix and Windows code samples in textbook

Copyright 2018 Silberschatz, Gavin & Gagne 61

Named Pipes

• Named Pipes are more powerful than
ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary
between the communicating processes

• Several processes can use the named pipe
for communication

• Provided on both UNIX and Windows
systems

Copyright 2018 Silberschatz, Gavin & Gagne 62

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 3

