CSMC 412

Operating Systems
Prof. Ashok K Agrawala

Operating System Structures

Operating-System Structures
- 1] - 1]

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

Objectives

* To describe the services an operating
system provides to users, processes,
and other systems

* To discuss the various ways of
structuring an operating system

* To explain how operating systems are
installed and customized and how
they boot

Operating System Services

e Operating systems provide an environment for execution of
programs and services to programs and users

* One set of operating-system services provides functions that are
helpful to the user:

— User interface - AlImost all operating systems have a user
interface (Ul).

* Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

— Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

— 1/0 operations - A running program may require 1/0O, which
may involve a file or an 1/0 device

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

Operating System Services (Cont.)

* One set of operating-system services provides functions that are helpful to
the user (Cont.):

— File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and
delete them, search them, list file Information, permission
management.

— Communications — Processes may exchange information, on the same
computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

— Error detection — OS needs to be constantly aware of possible errors

* May occur in the CPU and memory hardware, in I/0 devices, in
user program

* For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’ s and
programmer’ s abilities to efficiently use the system

Operating System Services (Cont.)

Another set of OS functions exists for ensuring the efficient operation of
the system itself via resource sharing

— Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

* Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

— Accounting - To keep track of which users use how much and what
kinds of computer resources

— Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with
each other

* Protection involves ensuring that all access to system resources
is controlled

* Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls

resource

program 17O file

execution

operations

systems

communication

allocation

error
detection

protection
and
security

accounting

services

operating system

hardware

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 7

User Operating System Interface - CLI

CLI or command interpreter allows direct
command entry

— Sometimes implemented in kernel,
sometimes by systems program

— Sometimes multiple flavors implemented —
shells

— Primarily fetches a command from user and
executes it

— Sometimes commands built-in, sometimes
just names of programs

* If the latter, adding new features doesn’t require
shell modification

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

Bourne Shell Command Interpreter

Default
iy ; .
T <
New Info Close Execute Bookmarks

Default

—l Default I

PEG-Mac-Pro:~ pbag$ w

September 21

15:24 up 56 mins, 2 users, load averaoges: 1.51 1.53 1.65

LISER TTY FROM LOGINE TIDLE WHAT

pbg consaole - 14:34 5@ -

pbg =00a - 15:85 - W

PBEG-Mac-Pro:~ pbg% iostat 5

disk® diskl diskl@® cpu load average

KB/t tps MB/fs KB/t tps MB/s KB/t tps MBAs wus sy id 1m 5m 15m
33.75 343 11.30 64.31 14 9,88 367 @ 0.82 11 5 84 1.51 1.53 1.65
5.27 3280 1.65 @.06 0 ©0.00 8.66 @ 0.8 4 2094 1,30 1.51 1.65
4,28 329 1.37 .06 @ 9.00 e.66 @ 9.68 5 392 1.44 1.51 1.65

AL

PEG-Mac-Pro:~ pbg% 1=

Applications Music WebEx

Applications (Parallels) Pando Packages config.log

Desktop Pictures getsmartdata. txt

Documents Public imp

Downloads Sites log

Dropbox Thumbs . db panda-dist

Library Virtuaol Machines praob . txt

Movies Volumes scripts

PEG-Mac-Pro:~ pbg% pwd
Fflsers/pbg

PBG-Mac-Pro:~ pbg$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=2.257 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=1.262 ms

AC

--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 packets received, @.8% packet loss

round-trip mindavg/mox/stddev = 1.262/1.760/2.257/8.4098 ms

PEG-Mac-Pro:~ pbg% D

Copyright 2018 Silberschatz, Gavin & Gagne

User Operating System Interface - GUI

* User-friendly desktop metaphor interface
— Usually mouse, keyboard, and monitor
— lcons represent files, programs, actions, etc

— Various mouse buttons over objects in the interface
cause various actions (provide information, options,
execute function, open directory (known as a folder)

— Invented at Xerox PARC

 Many systems now include both CLI and GUI
interfaces
— Microsoft Windows is GUI with CLI “command” shell

— Apple Mac OS X is “Aqua’ GUI interface with UNIX
kernel underneath and shells available

— Unix and Linux have CLI with optional GUI interfaces
(CDE, KDE, GNOME)

Touchscreen Interfaces

* Touchscreen devices require
new interfaces

| Mouse not possible or not desired

| Actions and selection based on
gestures

| Virtual keyboard for text entry

* Voice commands.

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

11

@ Grab File

G

EED = 6

The Mac OS X GUI

\Windew Help

By e S W @ F DS A) 1506E0TMan2Jul 2 K @

0 Netwark
2 Freedom Stipe
2 Waciniash HD
2 Unvtled
2 Unctles 2
o 208G
1 ZPRGE
@ iisk
* Peter Bast Galvin's iPod

oo

¥ phg

A Apalications

[Dotuments

| Games

| Wil ties

[ma

1 Deshrop

W Favorites

4 Music

i Vovies
Picturas
' Sites

o Pablic

| Preferences

¥ Lbrary

| e

| projerts

| consuit

September 21

fig-di- =5
e [T A @z) g B L B Q@ Q- eecion n ' 5). .
@+ Favwites> Dacumentss [usice Movies= Picturess Dastktops Apalications= ZFEGe ZPRGE- (Disk~ L |
) O 2067-06510uneride. || @ Desticp . @ Comuutér [© hu-dir | T
) 25) bosh) v 3 Moty) el
+ Knd Dete Madified Size Application
o For €/24/07, 1039\ 106 LkE Skm I =
o s £118/07, 5:57PM KB lakscane
O Formab e Netasik Crazhizs Inage Todyy. 106N 392K FreAve 25
o Today. 106PM 14 3KB Inkscape o
O NG Tody, 76300 EOLRR e P
Name: g-2.0a
4g-2.0a 1
TIFF Cozument
UT: sutker
'’
CALYENTFECOBLAC (SN
126G
Size: 38L.. KB 1951236 bytes)
dara: 901,236 ytes
Fursical. £81 KE (902,141
Madifed: Tosag, 2:230M
~S 5L Anributes: Todag, 2:73PM
FleHistary » e Path Owner; 2bs (101
“ hg-20n v fg-20a Croupt dmin ()
Permission: 700,
E5 Aunde Pathi (Val mas 2P~ Lfirp/
| ass-dir 202k/0sE -cir iy -d 1’
9-2.2a 1ift
L3 neok Application: Yev ew
L imp Valume! 2P3C
o G Capacity; 734 C§
Frae: 7343 CB
Format:
Mount Point: Aol m
- il} | b \ 5 ems 10f € Iters selected - 7343 GIawedazle 5.1 G3 uses e
]
_| Address Book = —
7 e 00 Dictionary and Thesaurus
R, sle pr—y ——e
@ CLl “« | A A Q operating system h)
i Groug Mema
—iensil
3 || Aaple Computer In pe Apple Computer Inc. it v Dictionar
| [lIDireczories &4 Aaple Computer In . 3
s - 2
iLasz Import apecreatsing yselem
I aan
the wit 1t supports i computer s hesc functions.
= 4 such as sibecul ting applic s tons, arcd
| d g main 1-800-MY-APPLE 1 cantralling pe
il i
1 alier 800-275-2373 |
[
I home hittp:/fvmay. appe.co™
il
| otk 1 Intisite oop
| C.pert no CA 92014 |
I U-ited Siztes B .
ey — |_Ear | 2 found =

Copyright 2018 Silberschatz, Gavin & Gagne

lpad Interface

~,

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

13

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program 17O file I resource .
execution operations systems Egmmunicanan allocation dceaunting
error pro;%%tlon
detection . security
services
operating system
hardware
September 21 Copyright 2018 Silberschatz, Gavin & Gagne 14

System Calls

* Programming interface to the services provided
by the OS

e Typically written in a high-level language (C or
C++)

* Mostly accessed by programs via a high-level
Application Programming Interface (API)
rather than direct system call use

 Three most common APIs are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux,
and Mac OS X), and Java API for the Java virtual
machine (JVM)

Note that the system-call names used throughout this
text are generic

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

e System call sequence to copy the contents of

Example of System Calls

one file to another file

September 21

source file

-

destination file

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normall

4 Example System Call Sequence N

\ Copyright 2018 Silgerschatz, Gavin & Gagy{e

16

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize © read(int fd, woid *buf, =size t count)
| | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize -t and size-t data types (among other
things). The parameters passed to read () are as follows:

* int fd—the file descriptor to be read

® vyoid *buf —a buffer where the data will be read into

* size t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

17

System Call Implementation

Typically, a number associated with each system call

— System-call interface maintains a table indexed
according to these numbers

The system call interface invokes the intended

system call in OS kernel and returns status of the
system call and any return values

The caller need know nothing about how the
system call is implemented

— Just needs to obey APl and understand what OS will do
as a result call

— Most details of OS interface hidden from programmer
by API

* Managed by run-time support library (set of functions built
into libraries included with compiler)

APl — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
—— open ()
g Implementation
i » Of open ()
. system call
return

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 19

System Call Parameter Passing

* Often, more information is required than simply
identity of desired system call

— Exact type and amount of information vary according to
OS and call

 Three general methods used to pass parameters to
the OS

— Simplest: pass the parameters in registers
* In some cases, may be more parameters than registers
— Parameters stored in a block, or table, in memory, and
address of block passed as a parameter in a register
* This approach taken by Linux and Solaris
— Parameters placed, or pushed, onto the stack by the

program and popped off the stack by the operating
system

— Block and stack methods do not limit the number or
length of parameters being passed

Parameter Passing via Table

X: parameters
for call

load address X
system call 13

—> X

register

— ™ use parameters
from table X
e

user program

September 21

operating system

Copyright 2018 Silberschatz, Gavin & Gagne

}

code for
system
call 13

21

Types of System Calls

* Process control
— create process, terminate process
— end, abort
— load, execute
— get process attributes, set process attributes
— wait for time
— wait event, signal event
— allocate and free memory
— Dump memory if error
— Debugger for determining bugs, single step execution

— Locks for managing access to shared data between
processes

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 22

Types of System Calls

* File management
— create file, delete file
— open, close file
— read, write, reposition
— get and set file attributes
* Device management
— request device, release device
— read, write, reposition
— get device attributes, set device attributes
— logically attach or detach devices

Types of System Calls (Cont.)

* Information maintenance
— get time or date, set time or date
— get system data, set system data
— get and set process, file, or device attributes

e Communications
— create, delete communication connection

— send, receive messages if message passing model to
host name or process name

* From client to server

— Shared-memory model create and gain access to
memory regions

— transfer status information
— attach and detach remote devices

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

24

Types of System Calls (Cont.)

* Protection
— Control access to resources
— Get and set permissions
— Allow and deny user access

September 21

Examples of Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject()

CreateFile()
ReadFile()
WriteFile()
CloseHandle()

SetConsoleMode()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Copyright 2018 Silberschatz, Gavin & Gagne

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe O
shmget ()
mmap ()

chmod ()
umask ()
chown()

26

Standard C Library Example

e C program invoking printf() library call,

which calls write() system call

#include <stdio.h>
int main {)

{
—— printf ("Greetings"); |-~

return 0,

}

Lsar
L J

mode
4{ standard C library —
kernel

mode
write [)
BV

write () H\,

sttem call J
—rr -_--"'"r_-

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

27

Example: MS-DOS

Single-tasking

Shell invoked when oo momo
system booted
Simple method to free memory
run program _
— No process created
Single memory space

. command
Loads program into interpreter command
memory, overwriting — interpreter

erne

all but the kernel kernel
Program exit -> shell @ (b)

reloaded At system startup running a program

Example: FreeBSD

Unix variant

User login -> invoke user’ s choice of

shell free memory

Shell executes fork() system call to
create process

— Executes exec() to load program into process C
process

— Shell waits for process to terminate

or continues with user commands Interpreter
Process exits with:
— code =0—-no error
process B

— code >0 —error code

kernel

System Programs

System programs provide a convenient environment
for program development and execution. They can
be divided into:

— File manipulation

— Status information sometimes stored in a File
modification

— Programming language support

— Program loading and execution

— Communications

— Background services

— Application programs

Most users view of the operation system is defined
by system programs, not the actual system calls

System Programs

Provide a convenient environment for program
development and execution

— Some of them are simply user interfaces to system calls;
others are considerably more complex

File management - Create, delete, copy, rename,
print, dump, list, and generally manipulate files and
directories

Status information

— Some ask the system for info - date, time, amount of
available memory, disk space, number of users

— Others provide detailed performance, logging, and
debugging information

— Typically, these programs format and print the output to
the terminal or other output devices

— Some systems implement a registry - used to store and
retrieve configuration information

System Programs (Cont.)

File modification
— Text editors to create and modify files

— Special commands to search contents of files or
perform transformations of the text

Programming-language support - Compilers,
assemblers, ebuggers and interpreters sometimes
provided

Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

Communications - Provide the mechanism for

creating virtual connections among processes,

users, and computer systems

— Allow users to send messages to one another’ s
screens, browse web pages, send electronic-mail

messages, log in remotely, transfer files from one
machine to another

System Programs (Cont.)

* Background Services

— Launch at boot time
e Some for system startup, then terminate
 Some from system boot to shutdown

— Provide facilities like disk checking, process
scheduling, error logging, printing

— Run in user context not kernel context
— Known as services, subsystems, daemons

* Application programs
— Don’t pertain to system
— Run by users
— Not typically considered part of OS

— Launched by command line, mouse click, finger
poke

Operating System Design and Implementation

Design and Implementation of OS not “solvable”,
but some approaches have proven successful

Internal structure of different Operating Systems can
vary widely

Start the design by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

— User goals — operating system should be convenient to
use, easy to learn, reliable, safe, and fast

— System goals — operating system should be easy to
design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

Operating System Desigh and Implementation
(Cont.)

* |Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something;
policies decide what will be done

* The separation of policy from mechanism is a
very important principle, it allows maximum
flexibility if policy decisions are to be changed
later (example — timer)

e Specifying and designing an OS is highly
creative task of software engineering

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 35

Implementation

Much variation
— Early OSes in assembly language
— Then system programming languages like Algol, PL/1
— Now C, C++

Usually a mix of languages

— Lowest levels in assembly
— Main bodyin C

— Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

More high-level language easier to port to other hardware
— But slower

Emulation can allow an OS to run on non-native hardware

Operating System Structure

* General-purpose OS is very large
program
* Various ways to structure ones
— Simple structure — MS-DOS
— More complex -- UNIX
— Layered — an abstrcation
— Microkernel -Mach

Simple Structure -- MS-DOS

 MS-DOS — written to
provide the most —
functionality in the i

i

least space
— Not dIVIdEd into resident system program
modules

— AlthOugh MS-DOS haS MS-DOS device drivers
some structure, its
interfaces and levels
of functionality are
not well separated

i

].

ROM BIOS device drivers }v

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 38

Non-Simple Structure -- UNIX

UNIX — limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts

— Systems programs
— The kernel

* Consists of everything below the system-call interface
and above the physical hardware

* Provides the file system, CPU scheduling, memory
management, and other operating-system functions;
a large number of functions for one level

Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

— signals terminal file system CPU scheduling
g . handling swapping block /O page replacement
2 character /O system system demand paging

terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

Layered Approach

* The operating system is T
divided into a number of ~ userinterface
layers (levels), each built / :

on top of lower layers.
The bottom layer (layer
0), is the hardware; the
highest (layer N) is the
user interface.

* With modularity, layers
are selected such that
each uses functions
(operations) and
services of only lower-
level layers

Microkernel System Structure

 Moves as much from the kernel into user space

* Mach example of microkernel
— Mac OS X kernel (Darwin) partly based on Mach

* Communication takes place between user
modules using message passing

e Benefits:
— Easier to extend a microkernel

— Easier to port the operating system to new
architectures

— More reliable (less code is running in kernel mode)
— More secure
* Detriments:

— Performance overhead of user space to kernel space
communication

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 42

Microkernel System Structure

Application
Program

File
System

Device
Driver

messages

Interprocess
Communication

memory

microkernel

managment

CPU
scheduling

hardware

user
mode

kernel
mode

Modules

* Many modern operating systems
implement loadable kernel modules
— Uses object-oriented approach
— Each core component is separate

— Each talks to the others over known
interfaces

— Each is loadable as needed within the kernel

* Overall, similar to layers but with more
flexible

— Linux, Solaris, etc

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

44

Solaris Modular Approach

scheduling

device and classes

bus drivers

miscellaneous kernel loadable
modules system calls
STREAMS executable
modules formats

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 45

- core Solaris .|

Hybrid Systems

 Most modern operating systems are actually not
one pure model
— Hybrid combines multiple approaches to address
performance, security, usability needs

— Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of
functionality

— Windows mostly monolithic, plus microkernel for
different subsystem personalities

* Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa
programming environment

— Below is kernel consisting of Mach microkernel and BSD
Unix parts, plus I/O kit and dynamically loadable
modules (called kernel extensions)

Mac OS X Structure

raphical user interface
grap Aqua

application environments and services

kernel environment

BSD

Mach

I/0O kit kernel extensions

10S

* Apple mobile OS for iPhone, iPad
— Structured on Mac OS X, added

September 21

functionality

Does not run OS X applications natively

e Also runs on different CPU architecture
(ARM vs. Intel)

Cocoa Touch Objective-C API for
developing apps

Media services layer for graphics,
audio, video

Core services provides cloud
computing, databases

Core operating system, based on Mac
OS X kernel

Copyright 2018 Silberschatz, Gavin & Gagne

Cocoa Touch

Media Services

Core Services

Core OS

48

Android

Developed by Open Handset Alliance (mostly Google)
— Open Source
Similar stack to 10S

Based on Linux kernel but modified
— Provides process, memory, device-driver management
— Adds power management
Runtime environment includes core set of libraries and
Dalvik virtual machine

— Apps developed in Java plus Android API

* Java class files compiled to Java bytecode then translated to
executable than runs in Dalvik VM

Libraries include frameworks for web browser (webkit),
database (SQLite), multimedia, smaller libc

Android Architecture

Application Framework

Libraries Android runtime
SQLite openGL Core Libraries
r:ugzcgr frarrr:\eec\l/\l/?)rk Dl
anag virtual machine
webkit libc

Operating-System Debugging

* Debugging is finding and fixing errors, or bugs
* OS generate log files containing error information

* Failure of an application can generate core dump file capturing
memory of the process

* Operating system failure can generate crash dump file
containing kernel memory

* Beyond crashes, performance tuning can optimize system
performance
— Sometimes using trace listings of activities, recorded for analysis

— Profiling is periodic sampling of instruction pointer to look for
statistical trends

Kernighan’ s Law: “Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug it.”

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

51

Performance Tuning

* Improve performance i

Oy removing
nottlenecks

* OS must provide
means of computing
and displaying

Taotals

measures of system s

behavior

Threads 563
Processes 50

Commik Charge (k)
Total 642128
Lirnit 4036760

* For example, “top”
program or Windows s cuuee o
Task Manager

September 21

CPU sage CPU Usage Hisbor
FF Usage Page File Usage Histary

Physical Memary (K)

Total 2096616
Aoy ailable 1391552
System Cache 1554154
Kernel Memory (1K)

Total 115724
Paged 55636

Monpaged 33035

Carnmit Charge: 6270 [39420 H

Copyright 2018 Silberschatz, Gavin & Gagne

52

0 DTrace tool in Solaris,
FreeBSD, Mac OS X allows
live instrumentation on
production systems

0 Probes fire when code is
executed within a provider,
capturing state data and
sending it to consumers of
those probes

0 Example of following
XEventsQueued system call
move from libc library to
kernel and back

DTrace

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes

CPU

O O O O O O oo oo oo o0

OO CcC o oo ocoo o -

FUNCTION
—= XEventsQueued
-> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
—-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-= loctl
-> loctl
-> getf
-> set active fd
<- set active fd
<— getf
-> get udatamodel
<— get udatamodel

—-> releasef
-> clear active fd
<- clear active fd
-> cv_broadcast
<— cv_broadcast
<— releasef
«<— loctl
<— loctl
<— _XEventsQueued
<— XEventsQueued

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

R RARRNRAACSAGAC

dca="A"m"ARA A

53

Dtrace (Cont.)

0 DTrace code to record

amount of time each # dtrace -s sched.d
process with UserID 101 is gérace. script ‘sched.d” matched 6 probes
in running mode (on CPU) gnome-settings-d 142354
- ome-vis-daemon 158243
in nanoseconds S i 189804
wnck-applet 200030
gnome-panel 277864
Sfihﬂfi I ton-cpu clock-applet 374916
?ld == 101 mapping-daemon 385475
self->ts = timestamp; Xscreensaver 514177
} ' metacity 539281
Xorg 2579646
sched: : :of f-cpu gnome-terminal 5007269
self->ts mixer applet2 7388447
java 10769137

@time [execname] = sum(timestamp - self->ts);
self->ts = 0;

}

Figure 2.21 Output of the D code.

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 54

Operating System Generation

* Operating systems are designed to run
on any of a class of machines; the
system must be configured for each
specific computer site

* SYSGEN program obtains information
concerning the specific configuration of
the hardware system

* Used to build system-specific compiled
kernel or system-tuned

e Can general more efficient code than one
general kernel

System Boot

When power initialized on system, execution starts at a fixed
memory location

— Firmware ROM used to hold initial boot code

Operating system must be made available to hardware so
hardware can start it

— Small piece of code — bootstrap loader, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

— Sometimes two-step process where boot block at fixed
location loaded by ROM code, which loads bootstrap loader
from disk

Common bootstrap loader, GRUB, allows selection of kernel
from multiple disks, versions, kernel options

Kernel loads and system is then running

September 21 Copyright 2018 Silberschatz, Gavin & Gagne

56

End of Chapter 2

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

