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Synchronization Examples

• Classic Problems of Synchronization

• Synchronization within the Kernel

• POSIX Synchronization

• Synchronization in Java 

• Alternative Approaches
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Classical Problems of Synchronization

• Classical problems used to test newly-proposed 
synchronization schemes
• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 3



Bounded-Buffer Problem

• n buffers, each can hold one item

• Semaphore mutex initialized to the value 1

• Semaphore full initialized to the value 0

• Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

• The structure of the producer process

do { 

...

/* produce an item in next_produced */ 

... 

wait(empty); 

wait(mutex); 

...

/* add next produced to the buffer */ 

... 

signal(mutex); 

signal(full); 

} while (true);
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Bounded Buffer Problem (Cont.)

• The structure of the consumer process

Do { 

wait(full); 

wait(mutex); 

...

/* remove an item from buffer to next_consumed */ 

... 

signal(mutex); 

signal(empty); 

...

/* consume the item in next consumed */ 

...

} while (true); 
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Readers-Writers Problem

• A data set is shared among a number of concurrent processes
• Readers – only read the data set; they do not perform any updates
• Writers   – can both read and write

• Problem – allow multiple readers to read at the same time
• Only one single writer can access the shared data at the same time

• Several variations of how readers and writers are considered  – all 
involve some form of priorities

• Shared Data
• Data set
• Semaphore rw_mutex initialized to 1
• Semaphore mutex initialized to 1
• Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

• The structure of a writer process

do {

wait(rw_mutex); 

...

/* writing is performed */ 

... 

signal(rw_mutex); 

} while (true);
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Readers-Writers Problem (Cont.)

• The structure of a reader process
do {

wait(mutex);

read_count++;

if (read_count == 1) 

wait(rw_mutex); 

signal(mutex); 

...

/* reading is performed */ 

... 

wait(mutex);

read count--;

if (read_count == 0) 

signal(rw_mutex); 

signal(mutex); 

} while (true);
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Readers-Writers Problem Variations

• First variation – no reader kept waiting unless writer has 
permission to use shared object

• Second variation – once writer is ready, it performs the write ASAP

• Both may have starvation leading to even more variations

• Problem is solved on some systems by kernel providing reader-
writer locks
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Dining-Philosophers Problem

• Philosophers spend their lives alternating thinking and eating

• Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat 
from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data 

• Bowl of rice (data set)

• Semaphore chopstick [5] initialized to 1
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Dining-Philosophers Problem Algorithm

• The structure of Philosopher i:
do { 

wait (chopstick[i] );

wait (chopStick[ (i + 1) % 5] );

//  eat

signal (chopstick[i] );

signal (chopstick[ (i + 1) % 5] );

//  think

} while (TRUE);

• What is the problem with this algorithm?
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Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{ 

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) { 

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) { 

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}
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Solution to Dining Philosophers (Cont.)

void test (int i) { 

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() { 

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}
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• Each philosopher i invokes the operations pickup() and putdown() in 
the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)
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A Monitor to Allocate Single Resource
monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = TRUE; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = FALSE; 

}

}
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Synchronization Examples

• Solaris

• Windows

• Linux

• Pthreads
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Solaris Synchronization

• Implements a variety of locks to support multitasking, multithreading 
(including real-time threads), and multiprocessing

• Uses adaptive mutexes for efficiency when protecting data from short code 
segments

• Starts as a standard semaphore spin-lock
• If lock held, and by a thread running on another CPU, spins
• If lock held by non-run-state thread, block and sleep waiting for signal of lock being released

• Uses condition variables
• Uses readers-writers locks when longer sections of code need access to 

data
• Uses turnstiles to order the list of threads waiting to acquire either an 

adaptive mutex or reader-writer lock
• Turnstiles are per-lock-holding-thread, not per-object

• Priority-inheritance per-turnstile gives the running thread the highest of 
the priorities of the threads in its turnstile
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Windows Synchronization

• Uses interrupt masks to protect access to global resources on 
uniprocessor systems

• Uses spinlocks on multiprocessor systems
• Spinlocking-thread will never be preempted

• Also provides dispatcher objects user-land which may act 
mutexes, semaphores, events, and timers
• Events

• An event acts much like a condition variable

• Timers notify one or more thread when time expired

• Dispatcher objects either signaled-state (object available) or non-
signaled state (thread will block)

September 21 Copyright 2018 Silberschatz, Gavin & Gagne 19



Linux Synchronization

• Linux:
• Prior to kernel Version 2.6, disables interrupts to implement short 

critical sections
• Version 2.6 and later, fully preemptive

• Linux provides:
• Semaphores
• atomic integers
• spinlocks
• reader-writer versions of both

• On single-cpu system, spinlocks replaced by enabling and 
disabling kernel preemption
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Pthreads Synchronization

• Pthreads API is OS-independent

• It provides:
• mutex locks

• condition variable

• Non-portable extensions include:
• read-write locks

• spinlocks



Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages



• A memory transaction is a sequence of read-
write operations to memory that are 
performed atomically.

void update()

{

/* read/write memory */

}

Transactional Memory
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• OpenMP is a set of compiler directives and API 
that support parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

The code contained within the #pragma omp 
critical directive is treated as a critical 
section and performed atomically.

OpenMP
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• Functional programming languages offer a 
different paradigm than procedural languages 
in that they do not maintain state. 

• Variables are treated as immutable and 
cannot change state once they have been 
assigned a value.

• There is increasing interest in functional 
languages such as Erlang and Scala for their 
approach in handling data races.

Functional Programming Languages
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