
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

Set 18

File System Implementation

1

File System

• Structure

• Naming

• Directory structure

• Operations

• …

2

File system Implementation

• Defines
• How files and directories are stored

• How disk space is managed

• How to make everything work efficiently and reliably

Copyright 2018 Silberschatz, Galvin and Gagne 3

File-System Structure

• File structure
• Logical storage unit
• Collection of related information

• File system resides on secondary storage (disks)
• Provides user interface to storage, mapping logical to physical
• Provides efficient and convenient access to disk by allowing data to be stored,

located, and retrieved easily

• Disk provides in-place rewrite and random/direct access
• I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure consisting of information about a file
• Device driver controls the physical device
• File system organized into layers

Copyright 2018 Silberschatz, Galvin and Gagne 4

Layered File System

Copyright 2018 Silberschatz, Galvin and Gagne 5

File System Layers

• Device drivers manage I/O devices at the I/O control layer
• Given commands like “read drive1, cylinder 72, track 2, sector 10, into memory location

1060” outputs low-level hardware specific commands to hardware controller to carry out the
operations called for

• Basic file system given command like “retrieve block 123” translates to device
driver commands

• Also manages memory buffers and caches (allocation, freeing, replacement)
• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical blocks
Translates logical block # to physical block #
Manages free space, disk allocation

Copyright 2018 Silberschatz, Galvin and Gagne 6

File System Layers (Cont.)

• Logical file system manages metadata information
• Translates file name into file number, file handle, location by maintaining file

control blocks (inodes in UNIX)
• Directory management
• Protection

• Layering useful for reducing complexity and redundancy but
• adds overhead and can decrease performance.

• Translates file name into file number, file handle, location by
maintaining file control blocks (inodes in UNIX)
• Logical layers can be implemented by any coding method according to OS

designer

Copyright 2018 Silberschatz, Galvin and Gagne 7

File System Layers (Cont.)

• Many file systems, sometimes many within an operating system
• Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows

has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray;

• Linux has more than 40 types, with extended file system ext2 and ext3
leading; plus distributed file systems, etc.)

• New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE

Copyright 2018 Silberschatz, Galvin and Gagne 8

File-System Implementation

• We have system calls at the API level, but how do we implement their
functions?
• On-disk and in-memory structures

• Boot control block contains info needed by system to boot OS from that
volume
• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table) contains volume
details
• Total # of blocks, # of free blocks, block size, free block pointers or array

• Directory structure organizes the files
• Names and inode numbers, master file table

Copyright 2018 Silberschatz, Galvin and Gagne 9

File System Layout

Copyright 2018 Silberschatz, Galvin and Gagne 10

File System Layout
• MBR: Master Boot Record

• Partition table:
• present at the end of MBR

• Gives the starting and ending address of each partition

• Boot Block: When a computer is booted,
• BIOS reads and executes MBR

• Locates active partition

• Reads the first block – Boot Block – and executes it.
• Program in the boot block loads the operating system contained in that partition

• Every partition contains a boot block even though it may not have a bootable OS

Copyright 2018 Silberschatz, Galvin and Gagne 11

File System Layout (Cont.)
• Volume Control Block – per volume

• Number of blocks in the volume

• Size of blocks

• Free blocks count

• Free-block pointers

• Free-FCB count

• FCB pointer

• In UFS it is called a Superblcok

• In NTFS it is stored in Master File Table

• Directory Structure – per file system
• Used to organize files

• In UFS - File names and associated inode numbers

Copyright 2018 Silberschatz, Galvin and Gagne 12

File-System Layout (Cont.)

• Per-file File Control Block (FCB) contains many details
about the file
• In UFS it includes inode number, permissions, size, dates

• In NTFS stores into master file table
• using relational DB structures

• One row per file

Copyright 2018 Silberschatz, Galvin and Gagne 13

Operations

• Open
• Call passes the file name to the logical file system
• Open system call searches the system-wide open-file table

• To check if the file is in use by another process
• Create a per-process open-file table entry, pointing to the system-wide open-file table entry

• Else
• Search the directory structure
• Copy FCB into a system-wide open-file table entry in the memory
• Make an entry in per-process open-file table with a pointer to the system-wide table entry
• Per-process open-file table also stores information such as the current location in the file

• Returns a pointer to the per-process entry
• File descriptor in UFS
• File handle in Windows

Copyright 2018 Silberschatz, Galvin and Gagne 14

Operations

• Close
• Remove per-process table entry

• Decrement system-wide entry’s open count
• When count goes to zero

• Any updated meta data copied to disk-based directory structure

• System-wide entry is removed

Copyright 2018 Silberschatz, Galvin and Gagne 15

In-Memory File System Structures

• Mount table storing file system mounts, mount points, file system
types

• The following figure illustrates the necessary file system structures
provided by the operating systems

• opening a file

• reading a file

• Plus buffers hold data blocks from secondary storage

• Open returns a file handle for subsequent use

• Data from read eventually copied to specified user process memory
address

Copyright 2018 Silberschatz, Galvin and Gagne 16

In-Memory File System Structures

Copyright 2018 Silberschatz, Galvin and Gagne 17

Directory Implementation
• Linear list of file names with pointer to the data

blocks
• Simple to program
• Time-consuming to execute

• Linear search time
• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time
• Collisions – situations where two file names hash to the

same location
• Only good if entries are fixed size, or use chained-

overflow method

Copyright 2018 Silberschatz, Galvin and Gagne 18

Directory Implementation

Copyright 2018 Silberschatz, Galvin and Gagne 19

Allocation Methods - Contiguous

• An allocation method refers to how disk blocks are allocated for files:

• Contiguous allocation – each file occupies set of contiguous blocks
• Best performance in most cases

• Simple – only starting location (block #) and length (number of blocks) are
required

• Problems include
• finding space for file,

• knowing file size,

• external fragmentation,

• need for compaction
• off-line (downtime) or on-line

Copyright 2018 Silberschatz, Galvin and Gagne 20

Contiguous Allocation

• Mapping from logical
to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

Copyright 2018 Silberschatz, Galvin and Gagne 21

Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use a modified
contiguous allocation scheme

• Extent-based file systems allocate disk blocks in extents
• Allocate in contiguous chunk of space

• An extent is a contiguous block of disks sectors

• Extents are allocated for file allocation

Copyright 2018 Silberschatz, Galvin and Gagne 22

Allocation Methods - Linked

• Linked allocation – each file a linked list of blocks
• File ends at nil pointer

• No external fragmentation

• Each block contains pointer to next block

• No compaction required

• Free space management system called when new block needed

• Improve efficiency by clustering blocks into groups but increases internal
fragmentation

• Reliability can be a problem

• Locating a block can take many I/Os and disk seeks

Copyright 2018 Silberschatz, Galvin and Gagne 23

Linked Allocation

Copyright 2018 Silberschatz, Galvin and Gagne 24

Linked Allocation

Copyright 2018 Silberschatz, Galvin and Gagne 25

Allocation Methods – Linked (Cont.)

• FAT (File Allocation Table) variation
• Beginning of volume has table, indexed by block number

• Much like a linked list, but faster on disk and cacheable

• New block allocation simple

Copyright 2018 Silberschatz, Galvin and Gagne 26

File-Allocation Table

Copyright 2018 Silberschatz, Galvin and Gagne 27

Allocation Methods - Indexed

• Indexed allocation
• Each file has its own index block(s) of pointers to its data blocks

• Logical view

index table

Copyright 2018 Silberschatz, Galvin and Gagne 28

Example of Indexed Allocation

Copyright 2018 Silberschatz, Galvin and Gagne 29

Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead
of index block

• Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index
table

Copyright 2018 Silberschatz, Galvin and Gagne 30

Indexed Allocation – Mapping
(Cont.)

Copyright 2018 Silberschatz, Galvin and Gagne 31

Combined Scheme: UNIX UFS

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Copyright 2018 Silberschatz, Galvin and Gagne 32

Inode Structure

Copyright 2018 Silberschatz, Galvin and Gagne 33

Performance

• Best method depends on file access type
• Contiguous great for sequential and random

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous or linked

• Indexed more complex
• Single block access could require 2 index block reads then data block read

• Clustering can help improve throughput, reduce CPU overhead

Copyright 2018 Silberschatz, Galvin and Gagne 34

Performance (Cont.)

• Adding instructions to the execution path to save one disk I/O is
reasonable
• Intel Core i9 – 9900K (2019) at 4.7Ghz = 412,090 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

• Typical disk drive at 250 I/Os per second
• 412,090 MIPS / 250 = 1,648 million instructions during one disk I/O

• Fast SSD drives provide 60,000 IOPS
• 412,090 MIPS / 60,000 = 6.86 millions instructions during one disk I/O

Copyright 2018 Silberschatz, Galvin and Gagne 35

Free-Space Management

• File system maintains free-space list to track available blocks/clusters
• (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

Copyright 2018 Silberschatz, Galvin and Gagne 36

Free-Space Management (Cont.)

• Bit map requires extra space
• Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

• Easy to get contiguous files

Copyright 2018 Silberschatz, Galvin and Gagne 37

Linked Free Space List on Disk

Linked list (free list)

Cannot get contiguous
space easily

No waste of space

No need to traverse the
entire list (if # free blocks
recorded)

Copyright 2018 Silberschatz, Galvin and Gagne 38

Free-Space Management (Cont.)

• Grouping
• Modify linked list to store address of next n-1 free blocks in first free block,

plus a pointer to next block that contains free-block-pointers (like this one)

• Counting
• Because space is frequently contiguously used and freed, with contiguous-

allocation, extents, or clustering
• Keep address of first free block and count of following free blocks

• Free space list then has entries containing addresses and counts

Copyright 2018 Silberschatz, Galvin and Gagne 39

Efficiency and Performance

• Efficiency dependent on:
• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of metadata structures

• Fixed-size or varying-size data structures

Copyright 2018 Silberschatz, Galvin and Gagne 40

Efficiency and Performance (Cont.)

• Performance
• Keeping data and metadata close together

• Buffer cache – separate section of main memory for frequently used blocks

• Synchronous writes sometimes requested by apps or needed by OS
• No buffering / caching – writes must hit disk before acknowledgement

• Asynchronous writes more common, buffer-able, faster

• Free-behind and read-ahead – techniques to optimize sequential access

• Reads frequently slower than writes

Copyright 2018 Silberschatz, Galvin and Gagne 41

Page Cache

• A page cache caches pages rather than disk blocks using virtual
memory techniques and addresses

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses the buffer (disk) cache

• This leads to the following figure

Copyright 2018 Silberschatz, Galvin and Gagne 42

I/O Without a Unified Buffer Cache

Copyright 2018 Silberschatz, Galvin and Gagne 43

Unified Buffer Cache

• A unified buffer cache uses the same page cache to cache both
memory-mapped pages and ordinary file system I/O to avoid double
caching

But which caches get priority, and what replacement algorithms to use?

Copyright 2018 Silberschatz, Galvin and Gagne 44

I/O Using a Unified Buffer Cache

Copyright 2018 Silberschatz, Galvin and Gagne 45

Recovery

• Consistency checking – compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies
• Can be slow and sometimes fails

• Use system programs to back up data from disk to another storage
device (magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup

Copyright 2018 Silberschatz, Galvin and Gagne 46

Log Structured File Systems

• Log structured (or journaling) file systems record each metadata update to
the file system as a transaction

• All transactions are written to a log
• A transaction is considered committed once it is written to the log (sequentially)
• Sometimes to a separate device or section of disk
• However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file system
structures
• When the file system structures are modified, the transaction is removed from the

log

• If the file system crashes, all remaining transactions in the log must still be
performed

• Faster recovery from crash, removes chance of inconsistency of metadata

Copyright 2018 Silberschatz, Galvin and Gagne 47

