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File System

• Structure

• Naming

• Directory structure

• Operations

• …
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File system Implementation

• Defines 
• How files and directories are stored 

• How disk space is managed

• How to make everything work efficiently and reliably
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File-System Structure

• File structure
• Logical storage unit
• Collection of related information

• File system resides on secondary storage (disks)
• Provides user interface to storage, mapping logical to physical
• Provides efficient and convenient access to disk by allowing data to be stored, 

located, and retrieved easily

• Disk provides in-place rewrite and random/direct access
• I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure consisting of information about a file
• Device driver controls the physical device 
• File system organized into layers
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Layered File System
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File System Layers

• Device drivers manage I/O devices at the I/O control layer
• Given commands like “read drive1, cylinder 72, track 2, sector 10, into memory location 

1060” outputs low-level hardware specific commands to hardware controller to carry out the 
operations called for

• Basic file system given command like “retrieve block 123” translates to device 
driver commands

• Also manages memory buffers and caches (allocation, freeing, replacement) 
• Buffers hold data in transit
• Caches hold frequently used data

• File organization module understands files, logical address, and physical blocks
Translates logical block # to physical block #
Manages free space, disk allocation
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File System Layers (Cont.)

• Logical file system manages metadata information
• Translates file name into file number, file handle, location by maintaining file 

control blocks (inodes in UNIX)
• Directory management
• Protection

• Layering useful for reducing complexity and redundancy but 
• adds overhead and can decrease performance.

• Translates file name into file number, file handle, location by 
maintaining file control blocks (inodes in UNIX)
• Logical layers can be implemented by any coding method according to OS 

designer
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File System Layers (Cont.)

• Many file systems, sometimes many within an operating system
• Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS;  Windows 

has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray; 

• Linux has more than 40 types, with extended file system ext2 and ext3 
leading; plus distributed file systems, etc.)

• New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE
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File-System Implementation

• We have system calls at the API level, but how do we implement their 
functions?
• On-disk and in-memory structures

• Boot control block contains info needed by system to boot OS from that 
volume
• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table) contains volume 
details
• Total # of blocks, # of free blocks, block size, free block pointers or array

• Directory structure organizes the files
• Names and inode numbers, master file table
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File System Layout
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File System Layout
• MBR: Master Boot Record

• Partition table: 
• present at the end of MBR

• Gives the starting and ending address of each partition

• Boot Block: When a computer is booted, 
• BIOS reads and executes MBR

• Locates active partition

• Reads the first block – Boot Block – and executes it. 
• Program in the boot block loads the operating system contained in that partition

• Every partition contains a boot block even though it may not have a bootable OS 
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File System Layout (Cont.)
• Volume Control Block – per volume

• Number of blocks in the volume

• Size of blocks

• Free blocks count

• Free-block pointers

• Free-FCB count

• FCB pointer

• In UFS it is called a Superblcok

• In NTFS it is stored in Master File Table

• Directory Structure – per file system
• Used to organize files

• In UFS  - File names and associated inode numbers
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File-System Layout (Cont.)

• Per-file File Control Block (FCB) contains many details 
about the file
• In UFS it includes inode number, permissions, size, dates

• In NTFS stores into master file table  
• using relational DB structures

• One row per file
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Operations

• Open
• Call passes the file name to the logical file system
• Open system call searches the system-wide open-file table

• To check if the file is in use by another process
• Create a per-process open-file table entry, pointing to the system-wide open-file table entry

• Else 
• Search the directory structure
• Copy FCB into a system-wide open-file table  entry in the memory
• Make an entry in per-process open-file table with a pointer to the system-wide table entry
• Per-process open-file table also stores information such as the current location in the file

• Returns a pointer to the per-process entry
• File descriptor in UFS
• File handle in Windows
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Operations

• Close
• Remove per-process table entry

• Decrement system-wide entry’s open count
• When count goes to zero

• Any updated meta data copied to disk-based directory structure

• System-wide entry is removed
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In-Memory File System Structures

• Mount table storing file system mounts, mount points, file system 
types

• The following figure illustrates the necessary file system structures 
provided by the operating systems

• opening a file

• reading a file

• Plus buffers hold data blocks from secondary storage

• Open returns a file handle for subsequent use

• Data from read eventually copied to specified user process memory 
address
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In-Memory File System Structures
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Directory Implementation
• Linear list of file names with pointer to the data 

blocks
• Simple to program
• Time-consuming to execute

• Linear search time
• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time
• Collisions – situations where two file names hash to the 

same location
• Only good if entries are fixed size, or use chained-

overflow method
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Directory Implementation
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Allocation Methods - Contiguous

• An allocation method refers to how disk blocks are allocated for files:

• Contiguous allocation – each file occupies set of contiguous blocks
• Best performance in most cases

• Simple – only starting location (block #) and length (number of blocks) are 
required

• Problems include 
• finding space for file, 

• knowing file size, 

• external fragmentation, 

• need for compaction 
• off-line (downtime) or on-line
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Contiguous Allocation

• Mapping from logical 
to physical

LA/512

Q

R

Block to be accessed = Q + 

starting address

Displacement into block = R
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Extent-Based Systems

• Many newer file systems (i.e., Veritas File System) use a modified 
contiguous allocation scheme

• Extent-based file systems allocate disk blocks in extents
• Allocate in contiguous chunk of space

• An extent is a contiguous block of disks sectors

• Extents are allocated for file allocation
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Allocation Methods - Linked

• Linked allocation – each file a linked list of blocks
• File ends at nil pointer

• No external fragmentation

• Each block contains pointer to next block

• No compaction required

• Free space management system called when new block needed

• Improve efficiency by clustering blocks into groups but increases internal 
fragmentation

• Reliability can be a problem

• Locating a block can take many I/Os and disk seeks
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Linked Allocation
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Linked Allocation
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Allocation Methods – Linked (Cont.)

• FAT (File Allocation Table) variation
• Beginning of volume has table, indexed by block number

• Much like a linked list, but faster on disk and cacheable 

• New block allocation simple
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File-Allocation Table
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Allocation Methods - Indexed

• Indexed allocation
• Each file has its own index block(s) of pointers to its data blocks

• Logical view

index table
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Example of Indexed Allocation
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Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead 
of index block

• Mapping from logical to physical in a file of maximum size of 256K 
bytes and block size of 512 bytes.  We need only 1 block for index 
table
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Indexed Allocation – Mapping 
(Cont.)
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Combined Scheme:  UNIX UFS 

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses
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Inode Structure
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Performance

• Best method depends on file access type
• Contiguous great for sequential and random

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous or linked

• Indexed more complex
• Single block access could require 2 index block reads then data block read

• Clustering can help improve throughput, reduce CPU overhead
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Performance (Cont.)

• Adding instructions to the execution path to save one disk I/O is 
reasonable
• Intel Core i9 – 9900K (2019) at 4.7Ghz = 412,090 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

• Typical disk drive at 250 I/Os per second
• 412,090 MIPS / 250 = 1,648 million instructions during one disk I/O 

• Fast SSD drives provide 60,000 IOPS
• 412,090 MIPS / 60,000 = 6.86 millions instructions during one disk I/O
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Free-Space Management

• File system maintains free-space list to track available blocks/clusters
• (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)

…

0 1 2 n-1

bit[i] =



 1  block[i] free

0  block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit
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Free-Space Management (Cont.)

• Bit map requires extra space
• Example:

block size = 4KB =  212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of memory

• Easy to get contiguous files
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Linked Free Space List on Disk

Linked list (free list)

Cannot get contiguous 
space easily

No waste of space

No need to traverse the 
entire list (if # free blocks 
recorded)
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Free-Space Management (Cont.)

• Grouping 
• Modify linked list to store address of next n-1 free blocks in first free block, 

plus a pointer to next block that contains free-block-pointers (like this one)

• Counting
• Because space is frequently contiguously used and freed,  with contiguous-

allocation, extents, or clustering
• Keep address of first free block and count of following free blocks

• Free space list then has entries containing addresses and counts
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Efficiency and Performance

• Efficiency dependent on:
• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of metadata structures

• Fixed-size or varying-size data structures
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Efficiency and Performance (Cont.)

• Performance
• Keeping data and metadata close together

• Buffer cache – separate section of main memory for frequently used blocks

• Synchronous writes sometimes requested by apps or needed by OS
• No buffering / caching – writes must hit disk before acknowledgement

• Asynchronous writes more common, buffer-able, faster

• Free-behind and read-ahead – techniques to optimize sequential access

• Reads frequently slower than writes
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Page Cache

• A page cache caches pages rather than disk blocks using virtual 
memory techniques and addresses

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses the buffer (disk) cache

• This leads to the following figure
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I/O Without a Unified Buffer Cache
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Unified Buffer Cache

• A unified buffer cache uses the same page cache to cache both 
memory-mapped pages and ordinary file system I/O to avoid double 
caching

But which caches get priority, and what replacement algorithms to use?
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I/O Using a Unified Buffer Cache
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Recovery

• Consistency checking – compares data in directory structure with 
data blocks on disk, and tries to fix inconsistencies
• Can be slow and sometimes fails

• Use system programs to back up data from disk to another storage 
device (magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup
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Log Structured File Systems

• Log structured (or journaling) file systems record each metadata update to 
the file system as a transaction

• All transactions are written to a log
• A transaction is considered committed once it is written to the log (sequentially)
• Sometimes to a separate device or section of disk
• However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file system 
structures
• When the file system structures are modified, the transaction is removed from the 

log

• If the file system crashes, all remaining transactions in the log must still be 
performed

• Faster recovery from crash, removes chance of inconsistency of metadata
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