
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

Set 17

1

File-System Interface

• File Concept

• Access Methods

• Disk and Directory Structure

• File-System Mounting

• File Sharing

• Protection

Copyright 2018 Silberschatz, Galvin and Gagne 2

Objectives

• To explain the function of file systems

• To describe the interfaces to file systems

• To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures

• To explore file-system protection

Copyright 2018 Silberschatz, Galvin and Gagne 3

File Concept

• Contiguous logical address space
• Records

• Types:
• Data

• numeric
• character
• binary

• Program

• Contents defined by file’s creator
• Many types

• Consider text file, source file, executable file

Copyright 2018 Silberschatz, Galvin and Gagne 4

File Attributes

• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

• Protection – controls who can do reading, writing, executing

• Time, date, and user identification – data for protection, security, and usage
monitoring

• Information about files are kept in the directory structure, which is maintained on
the disk

• Many variations, including extended file attributes such as file checksum

• Information kept in the directory structure

Copyright 2018 Silberschatz, Galvin and Gagne 5

File info Window on Mac OS X

Copyright 2018 Silberschatz, Galvin and Gagne 6

File Operations

• File is an abstract data type
• Create
• Write – at write pointer location
• Read – at read pointer location
• Reposition within file - seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for entry Fi, and move the

content of entry to memory
• Close (Fi) – move the content of entry Fi in memory to directory structure

on disk

Copyright 2018 Silberschatz, Galvin and Gagne 7

Open Files

• Several pieces of data are needed to manage open files:
• Open-file table: tracks open files

• File pointer: pointer to last read/write location, per process that has the file
open

• File-open count: counter of number of times a file is open – to allow removal
of data from open-file table when last processes closes it

• Disk location of the file: cache of data access information

• Access rights: per-process access mode information

Copyright 2018 Silberschatz, Galvin and Gagne 8

Open File Locking

• Provided by some operating systems and file systems
• Similar to reader-writer locks

• Shared lock similar to reader lock – several processes can acquire
concurrently

• Exclusive lock similar to writer lock

• Mediates access to a file

• Mandatory or advisory:
• Mandatory – access is denied depending on locks held and requested

• Advisory – processes can find status of locks and decide what to do

Copyright 2018 Silberschatz, Galvin and Gagne 9

File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

public static final boolean EXCLUSIVE = false;

public static final boolean SHARED = true;

public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;

FileLock exclusiveLock = null;

try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive

exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock

exclusiveLock.release();

Copyright 2018 Silberschatz, Galvin and Gagne 10

File Locking Example – Java API (Cont.)

// this locks the second half of the file - shared

sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);

/** Now read the data . . . */

// release the lock

sharedLock.release();

} catch (java.io.IOException ioe) {

System.err.println(ioe);

}finally {

if (exclusiveLock != null)

exclusiveLock.release();

if (sharedLock != null)

sharedLock.release();

}

}

}

Copyright 2018 Silberschatz, Galvin and Gagne 11

File Name

• name used to uniquely identify
a computer file stored in a file
system.

• Name may include:
• Host
• Device
• Path/Directory/Folder
• File – base name
• Type/Extension
• Version

• Common names:

12

File Name Contents

README Project overview

MANIFEST List of project files with brief explanations

INSTALL Installation instructions

Copying Licensing information

TODO Wish list for future extensions

NEWS Documentation on user-visible changes

Changes Code change summary

configure Platform configuration script

Makefile Build specification

Makefile.SH Shell script producing the above

config.h Platform configuration definitions

config_h.SH Shell script producing the above

patchlevel.h Defines the project release version

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/File_system

File Types – Name, Extension

Copyright 2018 Silberschatz, Galvin and Gagne 13

File Structure

• None - sequence of words, bytes

• Simple record structure
• Lines
• Fixed length
• Variable length

• Complex Structures
• Formatted document
• Relocatable load file

• Can simulate last two with first method by inserting appropriate control
characters

• Who decides:
• Operating system
• Program

Copyright 2018 Silberschatz, Galvin and Gagne 14

Sequential-access File

Copyright 2018 Silberschatz, Galvin and Gagne 15

Access Methods

• Sequential Access
read next

write next

reset

no read after last write
(rewrite)

• Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next

rewrite n

n = relative block number

• Relative block numbers allow OS to decide where file should be placed

Copyright 2018 Silberschatz, Galvin and Gagne 16

Simulation of Sequential Access on Direct-access File

Copyright 2018 Silberschatz, Galvin and Gagne 17

Other Access Methods

• Can be built on top of base methods

• General involve creation of an index for the file

• Keep index in memory for fast determination of location of data to be
operated on (consider UPC code plus record of data about that item)

• If too large, index (in memory) of the index (on disk)

• IBM indexed sequential-access method (ISAM)
• Small master index, points to disk blocks of secondary index
• File kept sorted on a defined key
• All done by the OS

• VMS operating system provides index and relative files as another example
(see next slide)

Copyright 2018 Silberschatz, Galvin and Gagne 18

Example of Index and Relative Files

Copyright 2018 Silberschatz, Galvin and Gagne 19

Directory Structure

• A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Copyright 2018 Silberschatz, Galvin and Gagne 20

Disk Structure

• Disk can be subdivided into partitions

• Disks or partitions can be RAID protected against failure

• Disk or partition can be used raw – without a file system, or formatted
with a file system

• Partitions also known as minidisks, slices

• Entity containing file system known as a volume

• Each volume containing file system also tracks that file system’s info in
device directory or volume table of contents

• As well as general-purpose file systems there are many special-purpose
file systems, frequently all within the same operating system or computer

Copyright 2018 Silberschatz, Galvin and Gagne 21

A Typical File-system Organization

Copyright 2018 Silberschatz, Galvin and Gagne 22

Types of File Systems

• We mostly talk of general-purpose file systems

• But systems frequently have may file systems, some general- and
some special- purpose

• Consider Solaris has
• tmpfs – memory-based volatile FS for fast, temporary I/O

• objfs – interface into kernel memory to get kernel symbols for debugging

• ctfs – contract file system for managing daemons

• lofs – loopback file system allows one FS to be accessed in place of another

• procfs – kernel interface to process structures

• ufs, zfs – general purpose file systems

Copyright 2018 Silberschatz, Galvin and Gagne 23

Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

Copyright 2018 Silberschatz, Galvin and Gagne 24

Directory Organization

• Efficiency – locating a file quickly

• Naming – convenient to users
• Two users can have same name for different files

• The same file can have several different names

• Grouping – logical grouping of files by properties, (e.g., all Java
programs, all games, …)

The directory is organized logically to obtain

Copyright 2018 Silberschatz, Galvin and Gagne 25

Single-Level Directory

• A single directory for all users

• Naming problem

• Grouping problem

Copyright 2018 Silberschatz, Galvin and Gagne 26

Two-Level Directory

• Separate directory for each user

Path name

Can have the same file name for different user

Efficient searching

No grouping capability

Copyright 2018 Silberschatz, Galvin and Gagne 27

Tree-Structured Directories

Copyright 2018 Silberschatz, Galvin and Gagne 28

Tree-Structured Directories (Cont.)

• Efficient searching

• Grouping Capability

• Current directory (working directory)
• cd /spell/mail/prog

• type list

Copyright 2018 Silberschatz, Galvin and Gagne 29

Tree-Structured Directories (Cont)

• Absolute or relative path name

• Creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”

Copyright 2018 Silberschatz, Galvin and Gagne 30

Acyclic-Graph Directories

• Have shared subdirectories and files

Copyright 2018 Silberschatz, Galvin and Gagne 31

Acyclic-Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list dangling pointer

Solutions:
• Backpointers, so we can delete all pointers

Variable size records a problem

• Backpointers using a daisy chain organization

• Entry-hold-count solution

• New directory entry type
• Link – another name (pointer) to an existing file

• Resolve the link – follow pointer to locate the file

Copyright 2018 Silberschatz, Galvin and Gagne 32

General Graph Directory

Copyright 2018 Silberschatz, Galvin and Gagne 33

General Graph Directory (Cont.)

• How do we guarantee no cycles?
• Allow only links to file not subdirectories

• Garbage collection

• Every time a new link is added use a cycle detection algorithm to determine
whether it is OK

Copyright 2018 Silberschatz, Galvin and Gagne 34

File System Mounting

• A file system must be mounted before it can
be accessed

• A unmounted file system is mounted at a
mount point

Copyright 2018 Silberschatz, Galvin and Gagne 35

Mount Point

Copyright 2018 Silberschatz, Galvin and Gagne 36

File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a network

• Network File System (NFS) is a common distributed file-sharing
method

• If multi-user system
• User IDs identify users, allowing permissions and protections to be per-user

Group IDs allow users to be in groups, permitting group access rights
• Owner of a file / directory
• Group of a file / directory

Copyright 2018 Silberschatz, Galvin and Gagne 37

File Sharing – Remote File Systems

• Uses networking to allow file system access between systems
• Manually via programs like FTP
• Automatically, seamlessly using distributed file systems
• Semi automatically via the world wide web

• Client-server model allows clients to mount remote file systems from servers
• Server can serve multiple clients
• Client and user-on-client identification is insecure or complicated
• NFS is standard UNIX client-server file sharing protocol
• CIFS is standard Windows protocol
• Standard operating system file calls are translated into remote calls

• Distributed Information Systems (distributed naming services) such as LDAP,
DNS, NIS, Active Directory implement unified access to information needed for
remote computing

Copyright 2018 Silberschatz, Galvin and Gagne 38

File Sharing – Failure Modes

• All file systems have failure modes
• For example corruption of directory structures or other non-user data, called

metadata

• Remote file systems add new failure modes, due to network failure,
server failure

• Recovery from failure can involve state information about status of
each remote request

• Stateless protocols such as NFS v3 include all information in each
request, allowing easy recovery but less security

Copyright 2018 Silberschatz, Galvin and Gagne 39

File Sharing – Consistency Semantics

• Specify how multiple users are to access a shared file simultaneously
• Similar to process synchronization algorithms

• Tend to be less complex due to disk I/O and network latency (for remote file systems

• Andrew File System (AFS) implemented complex remote file sharing
semantics

• Unix file system (UFS) implements:
• Writes to an open file visible immediately to other users of the same open file

• Sharing file pointer to allow multiple users to read and write concurrently

• AFS has session semantics
• Writes only visible to sessions starting after the file is closed

Copyright 2018 Silberschatz, Galvin and Gagne 40

Protection

• File owner/creator should be able to control:
• what can be done

• by whom

• Types of access
• Read

• Write

• Execute

• Append

• Delete

• List

Copyright 2018 Silberschatz, Galvin and Gagne 41

Access Lists and Groups

• Mode of access: read, write, execute

• Three classes of users on Unix / Linux
RWX

a) owner access 7 1 1 1
RWX

b) group access 6 1 1 0
RWX

c) public access 1 0 0 1

• Ask manager to create a group (unique name), say G, and add some
users to the group.

• For a particular file (say game) or subdirectory, define an appropriate
access.

Attach a group to a file
chgrp G game

Copyright 2018 Silberschatz, Galvin and Gagne 42

Windows 7 Access-Control List Management

Copyright 2018 Silberschatz, Galvin and Gagne 43

A Sample UNIX Directory Listing

Copyright 2018 Silberschatz, Galvin and Gagne 44

