CSMC 412

Operating Systems
Prof. Ashok K Agrawala

Set 17

File-System Interface

* File Concept

* Access Methods

 Disk and Directory Structure
* File-System Mounting

* File Sharing

* Protection

Objectives

* To explain the function of file systems
* To describe the interfaces to file systems

* To discuss file-system design tradeoffs, including access methods, file
sharing, file locking, and directory structures

* To explore file-system protection

File Concept

* Contiguous logical address space
* Records

* Types:
* Data

* numeric
* character
* binary

* Program

* Contents defined by file’s creator
* Many types

* Consider text file, source file, executable file

Copyright 2018 Silberschatz, Galvin and Gagne

File Attributes

 Name — only information kept in human-readable form

* Identifier — unique tag (number) identifies file within file system
* Type — needed for systems that support different types

* Location — pointer to file location on device

e Size — current file size

* Protection — controls who can do reading, writing, executing

* Time, date, and user identification — data for protection, security, and usage
monitoring

. Irr\]fo(rjmﬁtion about files are kept in the directory structure, which is maintained on
the dis

* Many variations, including extended file attributes such as file checksum
* Information kept in the directory structure

File info Window on Mac OS X

TEX

1l.tex 111Kk8
L& Modified: Today 2:00 PM

» Spotlight Comments

¥ General:

Kind: TeX Document
Size: 111,389 bytes (115 KB on disk)
Where: /Users/greg/Dropbox/osc9e/tex
Created: Today 1:46 PM
Modified: ngay 2:00 PM
Lbel:x B ueew

(] Stationery pad
() Locked

¥ More Info:
Last opened: Today 1:47 PM

¥ Name & Extension:

11.tex
[_) Hide extension
¥ Open with:
[X texmaker s

Use this application to open all documents
like this one.

Change All....

P Preview:
¥ Sharing & Permissions:
You can read and write

A greg Me) 4 Read & Write
staff + Read only
everyone + No Access

+-[® &

Copyright 2018 Silberschatz, Galvin and Gagne

File Operations

* File is an abstract data type

* Create

* Write — at write pointer location
* Read — at read pointer location
* Reposition within file - seek

* Delete

* Truncate

* Open(F;) — search the directory structure on disk for entry F;,, and move the
content of entry to memory

. Clo(sjg LF,.) — move the content of entry F;in memory to directory structure
on dis

Open Files

* Several pieces of data are needed to manage open files:
* Open-file table: tracks open files

File pointer: pointer to last read/write location, per process that has the file
open

File-open count: counter of number of times a file is open — to allow removal
of data from open-file table when last processes closes it

Disk location of the file: cache of data access information

Access rights: per-process access mode information

Open File Locking

* Provided by some operating systems and file systems

* Similar to reader-writer locks

» Shared lock similar to reader lock — several processes can acquire
concurrently

* Exclusive lock similar to writer lock
* Mediates access to a file

* Mandatory or advisory:
* Mandatory — access is denied depending on locks held and requested
* Advisory — processes can find status of locks and decide what to do

Copyright 2018 Silberschatz, Galvin and Gagne

File Locking Example —Java API

import java.io.*;
import java.nio.channels.*;
public class LockingExample {
public static final boolean EXCLUSIVE = false;
public static final boolean SHARED = true;
public static void main(String arsg[]) throws IOException {
FileLock sharedLock = null;
FileLock exclusiveLock = null;

try {
RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive
exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
/** Now modify the data ... */

// release the lock

exclusiveLock.release();

Copyright 2018 Silberschatz, Galvin and Gagne

10

File Locking Example —Java API (Cont.)

// this locks the second half of the file - shared
sharedLock = ch.lock(raf.length()/2+1, raf.length(),
/** Now read the data ... */

// release the lock

sharedLock.release();

} catch (java.io.lOException ioe) {

Hinally {

System.err.printin(ioe);

if (exclusiveLock != null)
exclusiveLock.release();
if (sharedLock != null)

sharedLock.release();

Copyright 2018 Silberschatz, Galvin and Gagne

SHARED);

11

File Name

* name used to uniquely identify
a computer file stored in a file
system.

* Name may include:

* Host

* Device
Path/Directory/Folder
File — base name
Type/Extension
Version

e Common names:

File Name
README
MANIFEST
INSTALL
Copying
TODO
NEWS
Changes
configure
Makefile
Makefile.SH
config.h
config_h.SH

patchlevel.h

Contents

Project overview

List of project files with brief explanations
Installation instructions

Licensing information

Wish list for future extensions
Documentation on user-visible changes
Code change summary

Platform configuration script

Build specification

Shell script producing the above
Platform configuration definitions

Shell script producing the above

Defines the project release version

12

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/File_system

File Types — Name,

Extension

file type usual extension function
executable exe, com, bin ready-to-run machine-
or none language program
object obj, o compiled, machine

language, not linked

source code

c, CC, java, pas,
asm, a

source code in various
languages

batch bat, sh commands to the command
interpreter
text txt, doc textual data, documents

word processor| wp, tex, rtf, various word-processor
doc formats

library lib, a, so, dll libraries of routines for
programmers

print or view ps, pdf, jpg ASCII or binary file in a
format for printing or
viewing

archive arc, zip, tar related files grouped into
one file, sometimes com-
pressed, for archiving
or storage

multimedia mpeg, mov, rm, | binary file containing

mp3, avi

audio or A/V information

Copyright 2018 Silberschatz, Galvin and Gagne

13

File Structure

None - sequence of words, bytes

Simple record structure
* Lines
* Fixed length
* Variable length

Complex Structures
* Formatted document
* Relocatable load file

Can simulate last two with first method by inserting appropriate control
characters

Who decides:
* Operating system
* Program

Sequential-access File

- current position
beginning

end

= rc\ind

—read or write =)

Copyright 2018 Silberschatz, Galvin and Gagne

15

Access Methods

e Sequential Access
read next
write next
reset
no read after last write
(rewrite)

* Direct Access — file is fixed length logical records
read n
write n
position to n
read next
write next
rewrite n

n = relative block number

» Relative block numbers allow OS to decide where file should be placed

Simulation of Sequential Access on Direct-access File

sequential access

implementation for direct access

reset cp = 0;

read next read cp;
cp=cp+1;

write next write cp;
cp=cp+1;

Copyright 2018 Silberschatz, Galvin and Gagne

17

Other Access Methods

e Can be built on top of base methods
 General involve creation of an index for the file

* Keep index in memory for fast determination of location of data to be
operated on (consider UPC code plus record of data about that item)

* |f too large, index (in memory) of the index (on disk)

* |IBM indexed sequential-access method (ISAM)
* Small master index, points to disk blocks of secondary index
* File kept sorted on a defined key
e All done by the OS

* VMS operating system provides index and relative files as another example
(see next slide)

Example of Index and Relative Files

logical record
last name number

Adams
Arthur
Asher smith, john |social-security| age
Smith
index file relative file

Copyright 2018 Silberschatz, Galvin and Gagne

Directory Structure

* A collection of nodes containing information about all files

Directory Q Q Q Q Q

\

\

Files

F2 F 4
F1 F3

Fn

Both the directory structure and the files reside on disk

Disk Structure

* Disk can be subdivided into partitions
* Disks or partitions can be RAID protected against failure

* Disk or partition can be used raw — without a file system, or formatted
with a file system

e Partitions also known as minidisks, slices
* Entity containing file system known as a volume

* Each volume containing file system also tracks that file system’s info in
device directory or volume table of contents

* As well as general-purpose file systems there are many special-purpose
file systems, frequently all within the same operating system or computer

Copyright 2018 Silberschatz, Galvin and Gagne

21

partition A <

partition B <

hVd

directory | | 4
files
> disk 1
giEsTy partition C <
files

Copyright 2018 Silberschatz, Galvin and Gagne

directory

files

AN

ypical File-system Organization

> disk 2

- disk 3

22

Types of File Systems

* We mostly talk of general-purpose file systems

e But systems frequently have may file systems, some general- and
some special- purpose

e Consider Solaris has

* tmpfs — memory-based volatile FS for fast, temporary /O

* objfs — interface into kernel memory to get kernel symbols for debugging

* ctfs — contract file system for managing daemons

* |lofs — loopback file system allows one FS to be accessed in place of another
» procfs — kernel interface to process structures

* ufs, zfs — general purpose file systems

Operations Performed on Directory

* Search for a file
* Create afile

* Delete afile

e List a directory
* Rename a file

* Traverse the file system

Directory Organization
The directory is organized logically to obtain
* Efficiency — locating a file quickly

* Naming — convenient to users
e Two users can have same name for different files
* The same file can have several different names

* Grouping — logical grouping of files by properties, (e.g., all Java
programs, all games, ...)

Single-Level Directory

* A single directory for all users

directory ca:I bﬂ] te] da%l mail | cont hegl recora

668060806068

* Naming problem

e Grouping problem

Copyright 2018 Silberschatz, Galvin and Gagne 26

wo-Level Directory

e Separate directory for each user

master file
directory ’ user 1 ‘ userZ‘ user3‘ user4‘
user file
directory test data test data
Path name

Can have the same file name for different user
Efficient searching

O O O oOd

No grouping capability

Copyright 2018 Silberschatz, Galvin and Gagne

ree-Structured Directories

0

oot | spell bin |pmgrams|

: iI—O

3 &

i~0 |30 |20
3O -0
,.,m..||o m.MU 3 —0)
ek 1O
m\x\\&w\wLO
-0 | 20

Tree-Structured Directories (Cont.)

* Efficient searching
* Grouping Capability

e Current directory (working directory)
*cd /spell/mail/prog
* type list

Tree-Structured Directories (Cont)

* Absolute or relative path name
* Creating a new file is done in current directory
* Delete afile

rm <file-name>

* Creating a new subdirectory is done in current directory

mkdir <dir-name> mail
Example: if in current directory /mail
mkdir count prog | copy | prt |exp|count

Deleting “mail” = deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

e Have shared subdirectories and files

root dict

spell

N

list

all

w

count

count

words

list

.

l

» st

rade

Ll

Copyright 2018 Silberschatz, Galvin and Gagne

31

Acyclic-Graph Directories (Cont.)

* Two different names (aliasing)

* If dict deletes list = dangling pointer

Solutions:

* Backpointers, so we can delete all pointers
Variable size records a problem

* Backpointers using a daisy chain organization
* Entry-hold-count solution

* New directory entry type
* Link — another name (pointer) to an existing file
* Resolve the link — follow pointer to locate the file

General Graph Directory

root | avi fc jim
text | mail | count| book book | mail (unhex| hyp
avi | count unhex| hex

Copyright 2018 Silberschatz, Galvin and Gagne

General Graph Directory (Cont.)

* How do we guarantee no cycles?
* Allow only links to file not subdirectories
e Garbage collection

* Every time a new link is added use a cycle detection algorithm to determine
whether it is OK

Copyright 2018 Silberschatz, Galvin and Gagne

34

File System Mounting

* A file system must be mounted before it can
be accessed

A unmounted file system is mounted at a
mount point

/

sue

(@) (b)

Copyright 2018 Silberschatz, Galvin and Gagne

35

Mount Point

users

sue Jane

Copyright 2018 Silberschatz, Galvin and Gagne

36

File Sharing

e Sharing of files on multi-user systems is desirable
e Sharing may be done through a protection scheme
* On distributed systems, files may be shared across a network

* Network File System (NFS) is a common distributed file-sharing
method

* If multi-user system

* User IDs identify users, allowing permissions and protections to be per-user
Group IDs allow users to be in groups, permitting group access rights

* Owner of a file / directory
e Group of a file / directory

File Sharing — Remote File Systems

* Uses networking to allow file system access between systems
* Manually via programs like FTP
* Automatically, seamlessly using distributed file systems
* Semi automatically via the world wide web

* Client-server model allows clients to mount remote file systems from servers
* Server can serve multiple clients
* Client and user-on-client identification is insecure or complicated
* NFS is standard UNIX client-server file sharing protocol
* CIFS is standard Windows protocol
» Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP,
DNS, NIS, Active Directory implement unified access to information needed for
remote computing

Copyright 2018 Silberschatz, Galvin and Gagne

38

File Sharing — Failure Modes

* All file systems have failure modes

* For example corruption of directory structures or other non-user data, called
metadata

 Remote file systems add new failure modes, due to network failure,
server failure

* Recovery from failure can involve state information about status of
each remote request

* Stateless protocols such as NFS v3 include all information in each
request, allowing easy recovery but less security

Copyright 2018 Silberschatz, Galvin and Gagne

39

File Sharing — Consistency Semantics

* Specify how multiple users are to access a shared file simultaneously
e Similar to process synchronization algorithms
* Tend to be less complex due to disk I/O and network latency (for remote file systems

* Andrew File System (AFS) implemented complex remote file sharing
semantics
e Unix file system (UFS) implements:
* Writes to an open file visible immediately to other users of the same open file
* Sharing file pointer to allow multiple users to read and write concurrently
* AFS has session semantics
* Writes only visible to sessions starting after the file is closed

Protection

* File owner/creator should be able to control:
 what can be done
* by whom

* Types of access
* Read
* Write
* Execute
* Append
* Delete
* List

Access Lists and Groups

* Mode of access: read, write, execute

* Three classes of users on Unix / Linux
RWX

a) owner access 7 = 111 owner dgroup public
RWX |

b) group access 6 = 110
RWX chmod 761 game

c) public access 1 = 001

* Ask manager to create a group (unique name), say G, and add some
users to the group.

* For a particular file (say game) or subdirectory, define an appropriate
access.

Attach a group to a file
chgrp G game

Windows 7 Access-Control List Management

ListPanel.java Properties @
General | Securty | Details I Frevious Versions

Chject name: HADATANPattems Materal’SnchList Panel java

(Group or user names:

m_‘_ SYSTEM

%_ Gregory G. Gagne (ggagne@weousers int)
g’_" FileAdmins (WCUSERSFileAdming)
2, Administrators {FILES \Administrators)

To change pemissions, click Edit.

Pemissions for Guest Al Dery

Full control

Madify

Read & execute
Read

Wiite

Special pemmissions

For special pemissions or advanced settings,
click Advanced. il

Leam about access control and pemissions

A L

oK || Canesl || Aeply

Copyright 2018 Silberschatz, Galvin and Gagne

43

A Sample UNIX Directory Listing

-tw-rw-r-- I pbg staff 31200 Sep 3 08:30
drwx------ Spbg staft 512 Jul 8 09.33
drwxrwxr-x 2 pbg staff 512 Jul 8 09:35
drwxrwx--- 2pbg student 512 Aug3 14:13
-IW-I--T-- [pbg staff 9423 Feb 24 2003
-rwxr-xr-x 1 pbg staff 20471 Feb 24 2003
drwx--x--x ~ 4pbg faculty 512 Jul 31 10:31
drwx------ Jpbg staff 1024 Aug 29 06:52
drwxrwxrwx 3 pbg staff 12 Jul 809:35

Copyright 2018 Silberschatz, Galvin and Gagne

Intro.ps
private/
doc/
student-proy/
program.c
program

lib/

mail/

test/

44

