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File-System Interface

• File Concept

• Access Methods

• Disk and Directory Structure

• File-System Mounting

• File Sharing

• Protection
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Objectives

• To explain the function of file systems

• To describe the interfaces to file systems

• To discuss file-system design tradeoffs, including access methods, file 
sharing, file locking, and directory structures

• To explore file-system protection
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File Concept

• Contiguous logical address space
• Records

• Types: 
• Data

• numeric
• character
• binary

• Program

• Contents defined by file’s creator
• Many types

• Consider text file, source file, executable file
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File Attributes

• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

• Protection – controls who can do reading, writing, executing

• Time, date, and user identification – data for protection, security, and usage 
monitoring

• Information about files are kept in the directory structure, which is maintained on 
the disk

• Many variations, including extended file attributes such as file checksum

• Information kept in the directory structure
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File info Window on Mac OS X
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File Operations

• File is an abstract data type
• Create
• Write – at write pointer location
• Read – at read pointer location
• Reposition within file - seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for entry Fi, and move the 

content of entry to memory
• Close (Fi) – move the content of entry Fi in memory to directory structure 

on disk
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Open Files

• Several pieces of data are needed to manage open files:
• Open-file table: tracks open files

• File pointer:  pointer to last read/write location, per process that has the file 
open

• File-open count: counter of number of times a file is open – to allow removal 
of data from open-file table when last processes closes it

• Disk location of the file: cache of data access information

• Access rights: per-process access mode information
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Open File Locking

• Provided by some operating systems and file systems
• Similar to reader-writer locks

• Shared lock similar to reader lock – several processes can acquire 
concurrently

• Exclusive lock similar to writer lock

• Mediates access to a file

• Mandatory or advisory:
• Mandatory – access is denied depending on locks held and requested

• Advisory – processes can find status of locks and decide what to do
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File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample { 

public static final boolean EXCLUSIVE = false;

public static final boolean SHARED = true;

public static void main(String arsg[]) throws IOException { 

FileLock sharedLock = null;

FileLock exclusiveLock = null;

try { 

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive

exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock

exclusiveLock.release();
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File Locking Example – Java API (Cont.)

// this locks the second half of the file - shared

sharedLock = ch.lock(raf.length()/2+1, raf.length(), SHARED);

/** Now read the data . . . */

// release the lock

sharedLock.release();

} catch (java.io.IOException ioe) {

System.err.println(ioe);

}finally {

if (exclusiveLock != null)

exclusiveLock.release();

if (sharedLock != null)

sharedLock.release();

}

}

}
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File Name

• name used to uniquely identify 
a computer file stored in a file 
system.

• Name may include:
• Host
• Device
• Path/Directory/Folder
• File – base name
• Type/Extension
• Version

• Common names:

12

File Name Contents

README Project overview

MANIFEST List of project files with brief explanations

INSTALL Installation instructions

Copying Licensing information

TODO Wish list for future extensions

NEWS Documentation on user-visible changes

Changes Code change summary

configure Platform configuration script

Makefile Build specification

Makefile.SH Shell script producing the above

config.h Platform configuration definitions

config_h.SH Shell script producing the above

patchlevel.h Defines the project release version

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/File_system


File Types – Name, Extension
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File Structure

• None - sequence of words, bytes

• Simple record structure
• Lines 
• Fixed length
• Variable length

• Complex Structures
• Formatted document
• Relocatable load file

• Can simulate last two with first method by inserting appropriate control 
characters

• Who decides:
• Operating system
• Program
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Sequential-access File
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Access Methods

• Sequential Access
read next

write next 

reset

no read after last write
(rewrite)

• Direct Access – file is fixed length logical records
read n

write n

position to n

read next

write next 

rewrite n

n = relative block number

• Relative block numbers allow OS to decide where file should be placed
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Simulation of Sequential Access on Direct-access File
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Other Access Methods

• Can be built on top of base methods

• General involve creation of an index for the file

• Keep index in memory for fast determination of location of data to be 
operated on (consider UPC code plus record of data about that item)

• If too large, index (in memory) of the index (on disk)

• IBM indexed sequential-access method (ISAM)
• Small master index, points to disk blocks of secondary index
• File kept sorted on a defined key
• All done by the OS

• VMS operating system provides index and relative files as another example 
(see next slide)
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Example of Index and Relative Files
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Directory Structure

• A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
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Disk Structure

• Disk can be subdivided into partitions

• Disks or partitions can be RAID protected against failure

• Disk or partition can be used raw – without a file system, or formatted
with a file system

• Partitions also known as minidisks, slices

• Entity containing file system known as a volume

• Each volume containing file system also tracks that file system’s info in 
device directory or volume table of contents

• As well as general-purpose file systems there are many special-purpose 
file systems, frequently all within the same operating system or computer
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A Typical File-system Organization
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Types of File Systems

• We mostly talk of general-purpose file systems

• But systems frequently have may file systems, some general- and 
some special- purpose

• Consider Solaris has
• tmpfs – memory-based volatile FS for fast, temporary I/O

• objfs – interface into kernel memory to get kernel symbols for debugging

• ctfs – contract file system for managing daemons 

• lofs – loopback file system allows one FS to be accessed in place of another

• procfs – kernel interface to process structures

• ufs, zfs – general purpose file systems
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Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system
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Directory Organization

• Efficiency – locating a file quickly

• Naming – convenient to users
• Two users can have same name for different files

• The same file can have several different names

• Grouping – logical grouping of files by properties, (e.g., all Java 
programs, all games, …)

The directory is organized logically  to obtain 
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Single-Level Directory

• A single directory for all users

• Naming problem

• Grouping problem
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Two-Level Directory

• Separate directory for each user

Path name

Can have the same file name for different user

Efficient searching

No grouping capability
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Tree-Structured Directories
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Tree-Structured Directories (Cont.)

• Efficient searching

• Grouping Capability

• Current directory (working directory)
• cd /spell/mail/prog

• type list
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Tree-Structured Directories (Cont)

• Absolute or relative path name

• Creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example:  if in current directory   /mail

mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”
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Acyclic-Graph Directories

• Have shared subdirectories and files
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Acyclic-Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list dangling pointer

Solutions:
• Backpointers, so we can delete all pointers

Variable size records a problem

• Backpointers using a daisy chain organization

• Entry-hold-count solution

• New directory entry type
• Link – another name (pointer) to an existing file

• Resolve the link – follow pointer to locate the file
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General Graph Directory
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General Graph Directory (Cont.)

• How do we guarantee no cycles?
• Allow only links to file not subdirectories

• Garbage collection

• Every time a new link is added use a cycle detection algorithm to determine 
whether it is OK

Copyright 2018 Silberschatz, Galvin and Gagne 34



File System Mounting

• A file system must be mounted before it can 
be accessed

• A unmounted file system is mounted at a 
mount point
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Mount Point
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File Sharing

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a network

• Network File System (NFS) is a common distributed file-sharing 
method

• If multi-user system
• User IDs identify users, allowing permissions and protections to be per-user

Group IDs allow users to be in groups, permitting group access rights
• Owner of a file / directory
• Group of a file / directory
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File Sharing – Remote File Systems

• Uses networking to allow file system access between systems
• Manually via programs like FTP
• Automatically, seamlessly using distributed file systems
• Semi automatically via the world wide web

• Client-server model allows clients to mount remote file systems from servers
• Server can serve multiple clients
• Client and user-on-client identification is insecure or complicated
• NFS is standard UNIX client-server file sharing protocol
• CIFS is standard Windows protocol
• Standard operating system file calls are translated into remote calls

• Distributed Information Systems (distributed naming services) such as LDAP, 
DNS, NIS, Active Directory implement unified access to information needed for 
remote computing
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File Sharing – Failure Modes

• All file systems have failure modes
• For example corruption of directory structures or other non-user data, called 

metadata

• Remote file systems add new failure modes, due to network failure, 
server failure

• Recovery from failure can involve state information about status of 
each remote request

• Stateless protocols such as NFS v3 include all information in each 
request, allowing easy recovery but less security
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File Sharing – Consistency Semantics

• Specify how multiple users are to access a shared file simultaneously
• Similar to process synchronization algorithms

• Tend to be less complex due to disk I/O and network latency (for remote file systems

• Andrew File System (AFS) implemented complex remote file sharing 
semantics

• Unix file system (UFS) implements:
• Writes to an open file visible immediately to other users of the same open file

• Sharing file pointer to allow multiple users to read and write concurrently

• AFS has session semantics
• Writes only visible to sessions starting after the file is closed
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Protection

• File owner/creator should be able to control:
• what can be done

• by whom

• Types of access
• Read

• Write

• Execute

• Append

• Delete

• List
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Access Lists and Groups

• Mode of access:  read, write, execute

• Three classes of users on Unix / Linux
RWX

a) owner access 7  1 1 1
RWX

b) group access 6  1 1 0
RWX

c) public access 1  0 0 1

• Ask manager to create a group (unique name), say G, and add some 
users to the group.

• For a particular file (say game) or subdirectory, define an appropriate 
access.

Attach a group to a file
chgrp G    game

Copyright 2018 Silberschatz, Galvin and Gagne 42



Windows 7 Access-Control List Management
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A Sample UNIX Directory Listing
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