
1

CMSC131

Recursion Part 2

2

Solving More Problems with Recursion

The examples we’ve looked at so far were useful for
exploring the concept of and syntax for recursion.

Let’s now consider some problems whose solution is
made much easier or efficient using recursion.

– Given a non-linear data structure, traverse it.

– Given a list of values, sort them.

– Given a list of values, figure out whether any subset
of them add up to a target value.

– Find the greatest common denominator of two ints.

Trees
A tree is a data structure where you have

individual nodes where each node has a single
entry point, but can have multiple exit points.

How would you visit each node
exactly once? For now let’s
assume there are at most two

exits possible, left and right.

3

MergeSort
Thinking about the problem of sorting from a
recursive point of view, we could describe it as:

– If there’s just one element, it’s sorted.

– Otherwise:

• split the list in two parts (roughly half and half)

• sort each of those two parts

• merge those two now-sorted parts together

Being careful, we could do all of this within the array itself by
creating two sub-lists logically…

https://www.youtube.com/watch?v=XaqR3G_NVoo

Pseudocode: MergeSort
MergeSort(

int[] list,

int start, int length

) {

if the length is greater than 1

find the “middle” of the region

MergeSort the list from start to middle

MergeSort the list from just past middle to end

Merge the two now-sorted parts of the list

}

}

Let’s trace it with some examples…

4

Pseudocode: Merge
Merge (int[] array,

int left_start, int left_size,

int right_start, int right_size

) {

make a new mini-list “L” the size of the “left” list and copy

from that from the master array to “L” do the same for the

“right” list into “R”

set indices posL and posR to tops of “L” and “R”

while both of “L” and “R” have things in them, compare the “top”

things in each and put the smaller back into master array and

advance the “top” of the appropriate mini-list

copy the rest of whichever mini-list (“L” or “R”) isn’t empty yet

back into the master array

Big-O: MergeSort
One way to consider the Big-O runtime of this

is that:
– a list of n values will be split roughly log2n times

before getting down to at most a single element
in every sublist (so log2n levels of recursion)

– every level’s merges will need to roughly look at
each value, so a cost of n per level

MergeSort is therefore in Big-O(nlog2n)
– This will be shown in more detail in CMSC351.

5

Concurrency and MergeSort?
Imagine we had a computer with 8 processors
that all shared the same memory bank (some
of you might have such a computer).

How could MergeSort be customized to take

advantage of this (assuming large input sizes)
without too much additional code?
– What would the “speed-up” potential seem to be?
– Do you think there are other things that could

stand in the way of this speed-up factor?

There are “real” problems (not contrived) whose
optimal solution is still an open question.

A. Certainly

B. Probably

C. Maybe

D. Doubtful

E. Nope

6

Subset Sum: Problem Statement
Given a list of values and a target sum, can that target
be made by adding a subset of the list of values?
NOTE: The “pure” version doesn’t take in a target but rather sets the target to 0.

Example list: 3, 34, -7, 4, 12, 5, 2, 23

Example target: 9

Example target: 17

Example target: 49

The sum of all of the positive values is 83. Do you think that

there are any target integer sums between 0 and 83 that can’t
be achieved? Try the first few numbers (0, 1, 2) by hand…

How many numbers between 0 and 83 cannot be
made from subsets of: 3, 34, -7, 4, 12, 5, 2, 23

A. None

B. One

C. Two to Five

D. Five to Ten

E. More than Ten

7

Subset Sum: Possible Solution
Given a list of values and a target sum, can
that target be made by adding a subset of the
list of values? Let’s consider a recursive way

of thinking about the problem.
– If there’s just one value in the list that is being

considered then it comes down to whether or not
that value is the target.

– Otherwise, there are two possibilities to consider
when thinking recursively; using the first value in
the list or not using it.

Subset Sum: recursion (page 1)
public static String

targetSum(int startPoint, int[] values, int target) {

//just one value in the list being considered

if (startPoint==values.length-1) {

if (values[startPoint]==target) {

return Integer.toString(target);

}

else {

return "";

}

}

//continued on next slide…

8

Subset Sum: recursion (page 2)
//check possibility #1

String withFirst = targetSum(

startPoint+1, values, target-values[startPoint]);

if (!withFirst.equals("")) {

return values[startPoint]+", "+withFirst;

}

//if not, check possibility #2

String withoutFirst = targetSum(

startPoint+1, values, target);

if (!withoutFirst.equals("")) {

return withoutFirst;

}

//if you get here, neither possibility worked

return "";

}

Big-O: Subset Sum
It turns out that this presented algorithm basically

explores all possible subsets in the worst case and
thus its worse case runtime is exponential in the
input size.

We call this Big-O(2n).

The question of whether or not there is a way to do
this in a better runtime class is an open problem in
computing (and worth a million dollars).

9

Greatest Common Denominator
The following works and is very efficient but is
it obvious why it gives the correct answer?

public static int doGCD (int n1, int n2)

{

//put in ascending order if not already

if (n2<n1) return doGCD(n2,n1);

//look for stopping case

if ((n2%n1)==0) return n1;

//recursive call on subproblem

return doGCD(n2%n1, n1);

}

“Towers” problems
Given 3 pegs and 6 disks of different sizes in

ascending size on peg 1, move them to peg 3
(using peg 2 as needed) one disk at a time so

that no larger disk is ever above a smaller one.

This is a smaller version of what’s called the
“Towers of Brahma” problem (64 disks).

A more generic version is Tower(nDisks, nPegs).

10

Tail Recursion
In some programming languages, if the
recursive call is the last thing to be executed in
the recursive method, the compiler can utilize

optimizations to better use memory, etc.

• It needs to be the very last thing, which is not the
same as being on the last line of code.

• Java does NOT optimize tail recursive code
currently…

Calculating the nth Fibonacci #
Fib(0) = 0, Fib(1) = 1, Fib(n)=Fib(n-1)+Fib(n-2)

Does this lend itself well to a recursive
solution?

What about tail recursion?

11

Regular Recursion (not tail)
public static long fibV1(int n) {

if (n <= 1) return n;

return fibV1(n-1)+fibV1(n-2);

}

Tail Recursion (but also other “trickery”)
public static long fibV2(long n, long a, long b) {

if (n == 0) return a;

if (n == 1) return b;

return fibV2(n-1, b, a + b);

}

//NOTE: initial call needs to be fibV2(#, 0, 1);

12

Copyright © 2016-2019: Evan Golub

