
1

CMSC131

Searching and Sorting

https://www.youtube.com/watch?v=ZZuD6iUe3Pc

When was the last time you searched a

physical phone book?

A. In the past year.

B. Between 1 and 5 years.

C. Between 6 and 10 years.

D. More than 10 years.

E. Never.

2

Pair and Share
Discuss with your neighbor any strategy you
could use when doing things like searching for
a name in a physical phone book or searching

for a page number in a physical text book.

Searching
If we know nothing about the way information in a list
is organized, then searching that list for a specific
item could require looking at every item in the list.

– If we find it we can of course stop searching, but it could
be in the last position we check in the worst case.

– If it’s not in the list, we won’t know that until we’ve looked
at every item.

Is there a way to organize a list that would help us
search quicker?

3

Searching a sorted list
One of the advantages of having a sorted list is that
searching it can be quicker!

– On an unordered list we would just start at the first

position and look at each value one by one from the first
to the last position until we found it or discovered it
wasn’t there.

– How could we take advantage of a list being sorted to

improve our search approach (assuming the list is sorted
by the same field that we would use to search for
something)?

Concept: BinarySearch
With an unordered list we would likely just start to search from the first
position, checking to see if it had what we wanted to find and if not moving on

to the next position.

– Each check we performed that didn’t find the item would only remove 1
candidate.

However, with a sorted list if we looked at the item in the middle position and
it wasn’t what we were looking for, we could then either eliminate all the items

to the left or to the right of it (so roughly half).

– Any items to the left of a position would have to be less than it and to the right
would be greater.

4

Code: BinarySearch
int searchRangeLeft=0, searchRangeRight=values.length-1;

int searchPos;

boolean found=false;

while (!found && searchRangeLeft<=searchRangeRight) {

searchPos = (searchRangeLeft+searchRangeRight)/2;

if (values[searchPos]==findVal) {

found=true;

} else if (values[searchPos]<findVal) {

searchRangeLeft=searchPos+1; //Eliminate left half

} else { //we know values[searchPos]>findVal

searchRangeRight=searchPos-1; //Eliminate right half

}

} //When the loop ends, found tells us the answer

//If the answer is true, searchPos tells us where

Efficiency: BinarySearch
Even in the worst case scenario, every time we look
at an item, we have to eliminate half of the remaining
ones as candidates.

– How many times can you take a half of a half of a half…
of n items until you have just one item left?

– Set (½)x n = 1 and solve for x and you have your answer!

5

Set (½)x n = 1. What is x?

A. 1

B. log2(n)

C. n

D. n*log2(n)

E. n2

If you want to confirm something is not in a list, and
that list is not sorted, do you have to check every item

one by one?

A. True

B. False

6

What is a natural way to sort?
Some Real-World Sorting Examples:

- stacks of exams (to make it easier to enter them in a grade book and
return in class)

- a hand of playing cards (want to be able to plan your strategy)

- a deck of playing cards (maybe we want to make sure no cards are
missing)

- a case of collector cards (so you can buy a case of packs make full
sets)

- other examples?

Would any/all of the ways we approach these work as
computer algorithms?

Sorting
We’ve seen the idea of sorting the items in a list based on
some specific field with the ArrayList and the sort method it
provides. The Arrays class in Java also provides the ability

to sort the contents of an array.

However, let’s look at some of the standard algorithms for
implementing our own sorting methods, assuming we have a

compareTo method available to us…

7

A simple sort?
As a starting point, let’s narrow our abilities to being able to
compare adjacent values and swap them if they are in the
wrong order.

https://www.youtube.com/watch?v=lyZQPjUT5B4

An algorithm that supports this (BubbleSort) uses pair-wise
adjacent comparisons to allow larger values to “bubble
towards the top” of a list.

– How could we write a loop that would do a single pass through an

array, comparing adjacent values and swapping them if they aren’t in
ascending order?

– How could we do this repeatedly and know when to stop?

Comparing neighbors
Assuming that we have an array values that stores primitive
numeric values and an integer n that stores the length of that

array, the following would do a single pass comparing adjacent
values and swapping them if they are not in ascending order.

for (int inner=0; inner<n-1; inner++) {

if (values[inner]>values[inner+1]) {

temp = values[inner];

values[inner]=values[inner+1];

values[inner+1]=temp;

}

}

8

How many times?
The number of times we might have to repeat that central code
depends on the data. If it’s already properly ordered, we really
only need to do a single pass and notice that nothing needed
to be swapped…

If we do a pass and something needs to be swapped at any
point, we might need yet another pass to properly order things
based on the new arrangement of values.

– Is it possible that this happens infinitely many times? No! We’ll

discuss this more soon…

BubbleSort
int temp, n=values.length;

boolean anySwaps = true;

while (anySwaps) {

anySwaps = false;

for (int inner=0; inner<n-1; inner++) {

if (values[inner]>values[inner+1]) {

temp = values[inner];

values[inner]=values[inner+1];

values[inner+1]=temp;

anySwaps = true;

}

}

}

9

Why can’t it be infinite?
We could (and in a later course might) prove that if
we do a pass through a list of values comparing and
swapping neighbors if needed that we end that pass
with the largest of the values in the last position.

We can take advantage of this and have our inner
loop stop “early” to reflect our logical knowledge of
what sub-part of the list still needs to be considered.

Slightly more efficient BubbleSort
int temp, unknown=values.length;

boolean anySwaps = true;

while (anySwaps) {

anySwaps = false;

for (int inner=0; inner<unknown-1; inner++) {

if (values[inner]>values[inner+1]) {

temp = values[inner];

values[inner]=values[inner+1];

values[inner+1]=temp;

anySwaps = true;

}

}

unknown--;

}

10

Efficiency of BubbleSort
In the best case (the list was already in the correct
order) the algorithm only makes n-1 comparisons.

In the worst case (the list was in reverse of the
correct order) the algorithm will require n outer
iterations. The inner loop, however, will get smaller
each time.

� (n-1)+(n-2)+…+(n-n) = Sum of the values from 1 to n-1 =

(n2˗n)/2 = Big-O(n2)

What algorithm would you use?
Assume you had some number of playing cards in a
row in front of you but they were face down. You
probably wouldn’t BubbleSort them. What would you
do given the following:

– You want to sort them in ascending face value.

– You can only turn at most two cards face up at a time

and after you move or don’t move them, you have to turn
them back face down.

– You can’t remember any face values in this example, so
if a card isn’t face up you do not know its value.

11

SelectionSort
The basic idea here is to find the largest item in a list,
swap it into the last position, then proceed to do that
again on the sub-list that does not contain the last
position.

– The idea is simple.

– The proof it is correct would be simple.

– The coding is simple.

– The execution time in terms of comparisons as the size
of the list grows is also Big-O(n2).

Code: SelectionSort
n = values.length;

for (int posToFill=0; posToFill<n-1; posToFill++) {

int minSoFarPos = posToFill;

for (int lookAt=posToFill+1; lookAt<n; lookAt++) {

if (values[lookAt] < values[minSoFarPos]) {

minSoFarPos = lookAt;

}

}

if(minSoFarPos != posToFill) {

int temp = values[posToFill];

values[posToFill]=values[minSoFarPos];

values[minSoFarPos]=temp;

}

}

12

InsertionSort
The basic idea here is to think of the first element of the list as
an already-sorted list of size one, and to then take an element
from the unsorted part and insert it into the correct position of
the already-sorted part of the list.

– The idea and proof is still fairly simple.

– The coding is also still fairly simple.

– The execution time in terms of comparisons as the size of the list

grows is also Big-O(n2) but in practice is still better than Bubble and

Selection (about half the number of comparisons).

Code: InsertionSort
n = values.length;

for (int posOfVal=1; posOfVal<n; posOfVal++) {

int temp = values[posOfVal];

int lookingAt = posOfVal-1;

while (lookingAt>=0 && values[lookingAt]>temp) {

values[lookingAt+1]=values[lookingAt];

lookingAt--;

}

values[lookingAt+1] = temp;

}

13

Visualizations of Sorting
There are many different sorting algorithms.

– Some use more of different types of resources.

– Some have more predictable runtimes than others.

– Some are more amenable to parallelization.

– Some are easier to prove things about.

– Some only work on certain types of information

You can see (and hear) some visualizations of common
comparison-based sorting algorithms.
www.toptal.com/developers/sorting-algorithms

www.youtube.com/watch?v=kPRA0W1kECg or www.youtube.com/watch?v=14oa9QBT5Js

www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Proving your code works?
How would you confirm that a sorting algorithm you
wrote works in all cases?

– While not a formal proof, one thing that you could do is

write a JUnit test that generates every possible ordering
of n values, runs the sorting algorithm on each, and
confirms that the list was correctly sorted.

– In CMSC351 one thing that might be covered is how to

formally prove that an algorithm will always give the
correct results. Of course when you implement it, you
might still want to JUnit test your code…

14

Faster Sorts
We saw with the binary search, that a “divide and
conquer” approach helped speed up a search,
assuming we had an ordered list.

Could this type of approach inspire a different sorting
algorithm that is faster than what we’ve seen...

Copyright © 2016-2019: Evan Golub

