
1

CMSC131

Multi-Dimensional Structures

Seating Chart
Imagine you were going to write a Java class

to store seating information about ESJ0202.

What would the data structure look like?

Take a moment to think about this and
describe what you have in mind to your

neighbor.

2

Multi-Dimensional Structures
We have seen some data structures that have

been used as a single “one-dimensional” list
(ArrayList, arrays, PriorityQueue).

We have also seen some that held information

across two dimensions in a rectangular pattern
(SquareGrid, Grid_3x5, Photograph).

We will now see how to build our own multi-

dimensional structures…

Multi-Dimensional Arrays
It is sometimes useful to have a custom-made multi-

dimensional structure for data storage.

– Consider things such as a chess board or warehouse, very

different but unlikely to be stored in a single list.

We will declare them as an "Array of Arrays"
– Allows us to have "ragged edged" arrays.

We could declare them as a rectangular "xD Array"
– Doesn't give any real advantage in Java but might

depending on the language.

3

2D Arrays – Syntax Examples
Rectangular

int[][] arr = new int[rows][cols];

Ragged
int[][] arr = new int[rows][];

arr[0] = new int[colsInRow0];

arr[1] = new int[colsInRow1];

arr[2] = new int[colsInRow2];

arr[3] = new int[colsInRow3];

:

:

Passing a multi-dimensional array
Passing a multi-dimensional array into a method

is similar to passing a one-dimensional array;
you just need to indicate how many dimensions

there are to the array.

public static void takeArr(Float[][] arrParam){

//arrParam will "know" how many rows there are

//and each row will "know" how many cols it has

}

4

Upper Left-Hand Right Triangle
We want to create a structure in which we store the

distance from the "origin" to each cell in the
structure, but only for the upper left-hand right
triangle starting at that origin.

Should it be stored in a Rectangular array or a
Ragged array?

How would we make it work for a triangle with sides
of length triangleSize?

Dealing with Ragged Arrays
int[][] reallyRagged;
reallyRagged = new int[5][];
reallyRagged[0] = new int[9];
reallyRagged[1] = new int[3];
reallyRagged[2] = new int[7];
reallyRagged[3] = new int[0]; //NOTE
reallyRagged[4] = new int[12];

How could you go in and perform an operation
on each element in the entire structure without
having to hard-code the different lengths?

5

Self-awareness
Recall that arrays know their own length!

counter = 0;

for (row=0; row<reallyRagged.length; row++) {

for (col=0; col<reallyRagged[row].length; col++) {

reallyRagged[row][col] = counter++;

}

}

What would happen if we had used the following
in the code on the previous slide?

reallyRagged[3] = null;

Using arrays with the ArrayList
It’s also possible to use a hybrid of an array that you
manage yourself and the ArrayList to create a

multi-dimensional structure, but the syntax is a bit
involved since Java doesn’t allow mixing arrays and
generics directly.

ArrayList<Float>[] twoDhybrid = (ArrayList<Float>[])new ArrayList[4];

…

twoDhybrid[0] = new ArrayList<Float>();

…

twoDhybrid[0].add(3.4F);

6

Using only the ArrayList
It is also possible to use the ArrayList rather than

arrays you manage to create such a multi-dimensional
structure.

ArrayList<ArrayList<Float>> twoDarraylist =

new ArrayList<ArrayList<Float>>(

twoDarraylist.add(new ArrayList<Float>());

twoDarraylist.add(new ArrayList<Float>());

twoDarraylist.add(new ArrayList<Float>());

twoDarraylist.get(0).add(0.1F);

twoDarraylist.get(1).add(1.1F);

twoDarraylist.get(2).add(2.1F);

twoDarraylist.add(1, new ArrayList<Float>());

Design Decisions
These last few options demonstrate the

realities of software engineers having to

balance the needs of the program (in
terms of data structure flexibility) with the

complexity of the syntax that might be

required for a certain approach…

7

More than Two Dimensions
These examples expand to more than two
dimensions. For example, if you were
representing things being stored in a cube

layout or even in multiple dimensions beyond
the three traditional physical ones, the data
structures could reflect this…

Rubik’s Cube: How many dimensions to use?

A. One-dimensional (list)

B. Two-dimensional (matrix)

C. Three-dimensions (cube)

D. Fewer dimensions

E. More dimensions

8

Copyright © 2010-2019 : Evan Golub

