
1

CMSC131

Casting and Runtime Verification

(mostly an at-home reading)

Casting
We have discussed casting being used in two different

ways this semester.
• The first was to “narrow” a data type, instructing Java to convert a

primitive even if it would mean some information was lost (such as
casting a float into an int).

• The second was to “promote” a reference of an interface type to be a
reference to a type that implements that interface. This second use can
be useful when dealing with generic data structures such as
ArrayList<T>. Note that in Java this casting just alters the reference,
not the object itself.

Of course, we need to be sure we are correct or at
runtime an exception will be thrown.

2

Methods not in the interface…
Thinking back to our Animal interface and our Cat and/or Dog
classes, an Animal reference pointing to a Cat or Dog object
cannot call a method that isn’t specified in the Animal interface

which was why if a program had

Animal pet = new Dog("Fluffy");

we would not be able to then say

pet.buryBone();

even though a Dog object can invoke that method, because pet

isn’t known by the compiler to be a reference to a Dog, just a
reference to an Animal.

Casting
If our program had Animal pet = new Dog("Fluffy");
we would not be able to then say pet.buryBone(); but we
could say

((Dog)pet).buryBone();

and the compiler would “trust” us because it knows Dog
implements Animal, so it could be valid.

However, at runtime Java will “verify” our claim, and if it detects
the type of the object is not what you said it would be, an
exception will be thrown.

3

ClassCastException
If our program had

Animal pet = new Cat("Crookshanks");

and we wrote

((Dog)pet).buryBone();

the compiler would “trust” us because it knows Dog
implements Animal, but at runtime when Java goes to

“verify” our claim and detects the type of the object is a
Cat rather than a Dog, a ClassCastException

exception will be thrown.

The equals method.
In Java, for reasons that you will learn about in

CMSC132, the equals method of a class
should have the signature

public boolean equals(Object other)

but within the method, the object to which
other refers needs to be accessed with a

reference of the data type of the current
class.

4

Consider the following…
public boolean equals(Object other) {

try {

Cat localCat = (Cat)other;

return getName().equals(localCat.getName());

}

catch (Exception e) {

return false;

}

}

Copyright © 2010-2019 : Evan Golub

