
1

CMSC131

Recursion Part 1

Iteration Recap
We’ve already seen the power of iteration in

computing via the use of for and while loops.
– for loops are common if there is a task that is to be

performed a fixed number of times in a basic
order/progression of what’s “next” to work on

• the “for each” style provides an easy way to visit everything in

(for example) a collection exactly once

– while loops are common if you do not know in advance
how many times the task needs to be performed or if the

order/progression is not based on a simple notion of a
“next” thing

2

Self-Referential Acronyms
There was an e-mail program named ELM.

A group wrote a free e-mail program that was
meant to replace it.

They named in PINE.

The acronym meant: PINE Is Nearly ELM

Lazy person with a cloning ability…
Imagine a person who doesn’t want to walk

more than one step a day but who can clone
themselves where they are standing.

They want to get a Pepsi from the refrigerator,

but it is many steps away.

What could they do?

3

Finding the “Minimum” item
How would you describe a loop that would find
the minimum item in a list?

Could you describe a way to find it where your
description refers to itself?

Describing certain tasks
There are many scenarios where the easiest or

most natural way to describe a task might be in
terms of smaller versions of the same task.
– To print a list of inputs backwards, print the list from the

second element onward backwards, then print the first
element.

– To sort a list, split it in half, sort each half, then merge those
two sorted lists together.

– To change file permissions for a folder, change the
permissions of the files in the current folder and then for
every subfolder, change the file permissions in that folder.

4

Recursion
Most programming languages provide a way to have
a subroutine (method in Java) call itself if desired.

– It is important to make sure that you are calling the

subroutine on a smaller version of the same problem since
the compiler will not check for this and if it’s not a smaller
version then the program might never terminate.

– It is also important to have a well-defined stopping point

that does not use a recursive call (sometimes called a base
case).

– It is important to make sure you are doing the correct pre

and post processing “around” the recursive calls.

Factorial
We define n! (pronounced en factorial) as the

result of multiplying all of the numbers in the
sequence of descending natural numbers from

n down to 1.

How could we write a program to compute this
value for us?

5

Factorial: for

The following static method will compute n!
– factorial grows very fast so the return value has been made

double to avoid overflow but this can sacrifice some precision.

public static double factorialFor(int n) {

double returnValue = 1;

for (int currVal=n; currVal>0; currVal--) {

returnValue *= currVal;

}

return returnValue;

}

Factorial: recursion

We could define factorial recursively as such:

“n! is n multiplied by (n-1)!”

Within this is a certain assumption though that n
starts positive and that when n gets down to 1

the answer is simply 1.

Take a minute now and use the above definition

to trace through computing 5!

6

Factorial: recursion

The following static method also computes n!

but this time using recursion.
– Again, since factorial grows quickly the return value is double

to avoid overflow but this can sacrifice some precision.

public static double factorialRecur(int n) {

if (n<=1) return 1; //Stopping point

return n*factorialRecur(n-1); //Recursive call

}

Let’s draw a representation of factorialRecur(5)

How do you feel about the style of the code

(lack of {} and a return from the middle)?

A. Dislike it a lot.

B. Dislike it a little.

C. No opinion.

D. Like it a little.

E. Like it a lot.
public static double factorialRecur(int n)

{

if (n<=1) return 1;

return n*factorialRecur(n-1);

}

7

How do you feel about the style of the code

for this recursive method?

A. Dislike it a lot.

B. Dislike it a little.

C. No opinion.

D. Like it a little.

E. Like it a lot.
public static double factorialRecur(int n)

{

return (n<=1)?1:n*factorialRecur(n-1);

}

Factorial discussion
Some things to note and discuss about this

problem:
– All of the previous solutions are correct but the use of

exceptions might be desired for negatives.

– For large values they will give slightly different results due to
the order in which the numbers end up being multiplied and
the way floating point math rounding is done.

– While the recursive solution might look more elegant, it has
more runtime overhead since each method call has a “cost”

to it (we’ve seen some of that with our stack traces).

8

Potential Problem
In fact, the recursive version of solving

factorial will not work for input over a

certain size even if the return value could
be stored in a large enough variable.

Why do you think that’s the case?

Recursion “hidden” cost
Every time a method is called, a new stack frame is
added to the stack to store local variables.

– That stack frame isn’t disposed of until that call to the

method has completed execution.

This means that every time a method calls itself, a new
stack frame is created without the current one being
disposed of yet (since it is still going to be needed).

– That’s going to be a lot of memory being used in the case

of factorial for a large n.

9

Scenario: Printing Backwards
To print a list of inputs backwards, we could…

- Use a loop and a data structure such as an array

or an ArrayList to read in and store all of the input,
and then another loop and that data structure to
print the values out in reverse order.

- We could also express the solution using a
recursive definition and say we will print the list
from the second element onward backwards, then
print the first element.

Print Backwards: for
public static void printFor(int n) {

int[] values = new int[n];

for (int index=0; index<n; index++) {

System.out.print("Enter value: ");

values[index] = sc.nextInt();

}

for (int i=values.length-1; i>=0; i--) {

System.out.print(values[i] + " ");

} //i used to make it fit on slide

}

10

Print Backwards: recursion
public static void printRecur(int n) {

System.out.print("Enter value: ");

int val = sc.nextInt();

if (n==1) {

System.out.print(val);

}

else {

printRecur(n-1);

System.out.print(val);

}

}

Pros and Cons
Something a recursive solution might handle more
easily/efficiently would be if the number of values
were not known in advance (so perhaps a “type -1 to
stop” scenario).

Something a for loop solution might handle more
easily/efficiently would be if you needed to print an
end of line marker at the end of the reversed list.

Are there any other advantages/disadvantages that
you see in this case?

11

Computing Triangular Constructions
Imagine we have a large supply of 1” cubes. We like

to make triangles on the floor in such a way that
the top “row” has 1 cube and then the next “row”
has 2 cubes, and the next one has 3 cubes…

Let’s work out how we could write a completely
recursive method that uses neither loops nor
multiplication to determine the total number of
cubes that would be used to create a triangle,
based on a height passed into the method.

– We need a stopping/base scenario.

– We need a recursion definition.

Example Solution
public int triangle(int rows) {

if (rows == 0) return 0;

return rows+triangle(rows-1);

}

12

Fibonacci Numbers
Generating Fibonacci numbers are a common example
used when discussing recursion but is also a poor use
of it. Fib(n) = Fib(n-1)+Fib(n-2)

The execution time a for-loop implementation grows in
a linear fashion with the size of the problem, but the
run time will grow exponentially when the “obvious”
recursive approach is used.

– CMSC351 will show a technique called memoization that can
be used to make the recursive version significantly faster.

Copyright © 2016-2019: Evan Golub

