
1

CMSC131

Java Collection Interface
and Collections Class

Mostly an “at-home reading” slide deck.

(not for use on Project 6)

Collection<E> and Collections
There are many ways to keep a related group of
items together in a data structure and the standard
Java libraries provide some support for this.

The Java standard install includes:

– a generic interface called Collection<E> which

identifies some common methods for interacting with
such data structures

– a class called Collections which includes some

potentially useful static methods that can interact with
Collection-based objects.

2

Collection<E> Interface: Methods
While not an exhaustive list of the methods that
classes implementing the Collection<E> interface

have to provide, these are a good list to discuss here.
boolean add(E newVal)

void clear()

boolean contains(Object ref)

boolean remove(Object ref)

int size()

boolean isEmpty()

Object[] toArray()

Collection<E> Examples
This is not an exhaustive list of the classes that
implement the Collection<E> interface, but they

are a good sampling of them.
– ArrayList

– PriorityQueue

– Stack

We’ve already explored the ArrayList in Java

(before knowing there was something “special” about
it in a larger context, so let’s explore the other two…

3

The way in which a PriorityQueue data structure is

used is to insert items where there is a natural ordering
to them, and as you remove things, they come out
based on that natural ordering, smallest first.

– It has all of the required Collection methods as well as
others such as remove() which simply removes the “next

smallest” item in the collection.

– However, note that none of this means the values are
stored in sorted order, you just know the order in which
things will come out if you call remove() repeatedly.

PriorityQueue

Usage Example: PriorityQueue
We could use a PriorityQueue to read in a list of

floating point values, and then print them out in
ascending order without having to call a sort method.
PriorityQueue<Double> myDoublePQ =

new PriorityQueue<Double>();

for (int index=0; index<n; index++) {

System.out.print("Enter value #"+(index+1)+": ");

myDoublePQ.add(sc.nextDouble());

}

while (!myDoublePQ.isEmpty()) {

System.out.println(myDoublePQ.remove());

}

4

Pros of Collection interface
One of the advantages of using an interface like
Collection is that if you have a method that should

be able to operate on multiple objects as long as they
have a required method that is specified in the
interface, you can write the method to take a
reference to any object that implements that interface!

Also, anything that implements Collection has

what’s required to use a “for-each” loop.

General-Use Methods
Imagine wanting to be able to print the sum of a
collection of Double values, regardless of what type
of collection is was…

public static double

sumOfDoubles(Collection<Double> theCollection) {

double sum = 0;

for (Double val : theCollection) {

sum+=val;

}

return sum;

}

5

Con of Collection interface
However, that same ability to make use of collections
regardless of their specific type is also a “con” in the
eyes of many.

It means that although there are very specific logical
rules on how to access data structures such as a
priority queue or stack, using either the Stack
PriorityQueue or the Set that Java provides

allows you to access it in other ways as well.

Collections class and ArrayList
The ArrayList class implements the List interface, which
itself extends Collection.

This means that any method which can take either a List or a
Collection as a parameter (which the methods in
Collections do) can take an ArrayList object’s reference.

These slides will look at methods that will:
– Sort the contents of any List.

– Return the min or the max of any Collection as well as ones that

will shuffle the contents of it.

6

Collections: sort
Assume we had declared and filled:

ArrayList<Student> myList;

We could sort this list based on their name by simply
calling:

Collections.sort(myList);

The Java-provided static sort method would use our
compareTo method as the basis for sorting the list

behind the scenes.

Collections: min, max
Using this same ArrayList object, without calling

sort on it, we could print the record of the students
with the alphabetically smallest and largest name:
System.out.println("Min: "+Collections.min(myList));

System.out.println("Max: "+Collections.max(myList));

Again, our compareTo method would be used as the

basis for determining this behind the scenes.
However, no change would be made to the actual list
and the runtime would be faster since it doesn’t need
to sort to get these.

7

Consider the following…
Does a Deck of cards have a minimum value?

If not, then having Deck implement Collection

would be logically unusual since a Collection

must have a minimum value…

Collections: shuffle
If we wanted to randomly shuffle our list of students
(perhaps to decide who to call on in class) we could
simply call Collections.shuffle(arrayList);

The items in our list would be randomly shuffled into a
new order. Each time this method is called, a different
and statistically unpredictable ordering is the result.

NOTE: This is NOT the controlled shuffle you will be asked to

implement in P6 (or the one P7 will ask you to do).

8

Copyright © 2016-2019: Evan Golub

