
1

CMSC131

Polymorphism and Interfaces

Polymorphism
We’ve seen that one of the aspects of object-oriented languages

which makes it more than just structured programming is the
ability to have general-use data structure classes like the
ArrayList<T>.

A term that has come up in describing some of the benefits and
properties of parametric polymorphism is "generic" when
referring to data structure types.

There are different categories of polymorphism that can be

discussed, and different object-oriented languages support
polymorphism in a variety of ways.

2

Homogenous Data Structures
With the ArrayList<T> data structure, one of the

limitations that we have discussed is that although
we can ask for an ArrayList for any object type

we choose, the references that we add to the list
must match that type.

This means that if we were to create an
ArrayList<Rational> we cannot add a
reference to a CubicPoly or to a Long to it.

Heterogeneous Lists
�How often would you say you make or use

lists that are heterogeneous?

�Do you think there would ever be a logic to

having a Rational and CubicPoly in the same
list?

�Do you think there would ever be a logic to

having a Rational and Long in the same list?

3

Java Interfaces
We now look at something called subtype polymorphism

as we consider the concept of an interface in Java.

In Java, an interface is used to establish (for
example) a set of public methods that any class
saying it implements that interface must contain.

If we implement several classes which implement the
same interface, we get an added ability; we can create
a reference using the interface's name and have it
point to an object of any of the class types that
implement that interface.

Example: Comparable<T>
An interface that is defined by the standard Java
libraries is called Comparable<T>.

A class that implements this interface has to provide
a public method int compareTo(T otherObject)

that behaves the “appropriate” ways.

We’ve seen this method before, and it can be part of
any class, but if the class states that it implements
Comparable, it has to and we can get advantages…

4

Arrays.sort(array of objects)
Java has a utility class named Arrays that contains a

variety of general-purpose methods for
manipulating arrays, assuming they either contain
primitive types or objects with certain properties.

One such potentially useful method is sort() that
takes any array of an object type as long as that
type implements the Comparable interface.

Making Rational a Comparable type
public class Rational

implements Comparable<Rational> {

:

:

@Override

public int compareTo(Rational otherObject) {

return

this.subtract(otherObject).getNumer();

}

}

That might be all we need to do! Is it? ����

5

Try it out with your Lab06 later…
public static void main(String[] args) {

Rational[] list = new Rational[7];

list[0] = new Rational(7,11);

list[1] = new Rational(8,11);

list[2] = new Rational(9,11);

list[3] = new Rational(10,11);

list[4] = new Rational(7,10);

list[5] = new Rational(7,9);

list[6] = new Rational(7,8);

Arrays.sort(list);

for (Rational var : list) {

System.out.print(var + " ");

}

System.out.println();

}

Creating our own interface…
We might want to support a certain amount of
heterogeneous behavior among a set of classes we
are designing.

The easiest way to support this might be by creating
an interface of our own.

Imagine having a variety of animals to support, yet
wanting to be able to have a single ArrayList or

array that contains different animals within it…

6

Interface: Animal.java
public interface Animal {

public String getName();

public void setName(String s);

public String makeSound();

public String toString();

}

Class: Cat.java
public class Cat implements Animal {

private String animalName;

public Cat(String nameIn) {animalName=nameIn;}

public String getName() {return animalName;}

public void setName(String s) {animalName=s;}

public String makeSound() {return "meow";}

public String toString() {return animalName;}

}

7

Use of @Override
A somewhat common convention with methods
connected to an interface being implemented is to
make use of the Java “annotation type” text
@Override above it.

– It is not required and causes no differences behind the scenes in
terms of bytecode.

– It is a way to avoid careless typos since it will cause a compilation
error if the signature of the method being written doesn’t match
the signature of a previously-mentioned method.

– You may have noticed this annotation in some code we provided
(you will see it more in 132).

Designing Interfaces
Once agreed upon, changing an interface can be a fairly time-

costly process, so make sure it is well thought out.
– Think long-term and make sure to only include things that really should

be required to be in there.

In addition to method signatures, interface definitions can
contain public static constants (note: you don’t actually
use the words final or static in the interface definition).

When creating a new class, it can implement more than one
interface if you want to.

8

A heterogeneous array or ArrayList
Could we have Cats and Dogs together in the

same array or ArrayList?

Yes, we can, if we create an array or an
ArrayList of Animal references and then

have each position refer to an allocated Cat
object or Dog object as desired.

Methods not in the interface…
What if we wanted our Cat and/or Dog classes to
have methods not defined in the interface?

What if the extra methods in the Cat class and the
extra methods in the Dog class aren't the same as
each other?

Answer: Casting! We can use (type) casting to
specify what the object’s actual data type is and
then we can dereference it using that to gain access
to non-interface methods.

9

Which of the following would be legal?

1. Animal x = new Animal("Lucky");

2. Animal x = new Cat("Lucky");

3. Animal x = new Dog("Lucky");

4. Cat x = new Cat("Lucky");

5. Cat x = new Dog("Lucky");

Which types of object could be
passed into an Animal parameter?

1. Animal

2. Dog

3. Cat

10

Comparable Animals?
What if you wanted all of your animals to also be
comparable? In Java, a newly-defined interface can
extend an existing one.

We could change the Animal interface
public interface ComparableAnimal extends

Comparable<ComparableAnimal> {

Then each class that implements this would need the
appropriate compareTo method.

Implementing Multiple Interfaces
What if you only wanted some of your animals to also be
comparable? Have the Animal interface we had at the start of
the slide set and define ComparableCat as:
public class ComparableCat

implements Animal, Comparable<Animal> {

…

@Override

public int compareTo(Animal other) {

return

this.getName().compareTo(other.getName());

}

}

11

Changes that happened in Java 8
One of the big changes that was introduced in Java 8 is being

allowed to have a default implementation of a method within
the interface definition itself.

– Previously, when it came to methods, the interface was entirely
about setting requirements for classes that wanted to implement that

interface.

One advantage to this is that if you decide to add a new
method to the list of required ones, you can also provide a

default action so older classes will still compile and run.

– The challenge here is being able to write a default that “makes

sense” for any classes that implement the interface but not that
particular method.

Interface: AnimalJ8.java
public interface AnimalJ8 {

public String getName();

public void setName(String s);

default public String makeSound(){

return "um";

}

public String toString();

}

12

Class: CatJ8.java
public class CatJ8 implements AnimalJ8 {

private String animalName;

public CatJ8(String nameIn) {animalName=nameIn;}

public String getName() {return animalName;}

public void setName(String s) {animalName=s;}

public String makeSound() {return "meow";}

public String toString() {return animalName;}

}

//Nothing really changes other than our naming

// of things with J8.

Class: MartianJ8.java
public class MartianJ8 implements AnimalJ8 {

private String animalName;

public MartianJ8(String nameIn) {animalName=nameIn;}

public String getName() {return animalName;}

public void setName(String s) {animalName=s;}

//Note that we didn’t implement the makeSound() method.

// It will use the default version.

public String toString() {return animalName;}

}

13

What will be printed?
AnimalJ8[] pets = new AnimalJ8[4];

pets[0] = new CatJ8("Neko");

pets[1] = new DogJ8("Fluffy");

pets[2] = new CatJ8("Crookshanks");

pets[3] = new MartianJ8("Marvin");

AnimalJ8 temp;

for (int i=0; i<pets.length; i++) {

temp = pets[i];

System.out.println(temp.getName() +

" says " + temp.makeSound());

}

Things interfaces still can’t do…
Enforce that constructors are being written

at the class level by the implementing

class (since the name of the constructor
is the same as the name of the class).

Define instance fields within the class.

Define private static fields within the class.

14

The Number Class
In CMSC132 you might see that Java provides something
called Number that other numeric classes can extend (all of

the Java numeric wrappers do this). This is different than
interfaces but is part of subtype polymorphism.

If we wanted Rational to as well, we would need to do this

as well and provide the proper methods to convert the rational
value to byte, double, float, int, long, and short. We could
then have an ArrayList<Number> that held a Rational and a
Long.

Copyright © 2010-2019 : Evan Golub

