
1

CMSC131

Data Structure: an array which we control

If ArrayList had much of what you wanted but not all,
would you want to…

A. be able to edit ArrayList.java to add
what you wanted

B. copy ArrayList.java into a different
file, rename it, and edit that

C. be able to use the existing ArrayList

as a tool while make a new class

2

The array: The Concept
There are a wide variety of data structures that we

can use or create to attempt to hold data in useful,
organized, efficient ways.

Similar to an ArrayList, an array is a linear,
contiguous, homogenous structure that can hold an
arbitrary number of elements but is available in all
languages.

However, for this structure we need to know how
many we want it to hold in advance. Once we
allocate the array, its size can not be altered.

The array: Some Properties
Elements in an array of size n are indexed (some
languages do 1..n, many like Java use 0..n-1) and
that is the only way we can access items inside.

The data structure has a "first" and "last" position.

In an array with more than 1 element, any position
other than the first has a "previous" position and any
position other than the last has a "next" position.

3

The array in Java
In Java, an array is an object and we will have a variable serve
as a reference to that object.

We will indicate the type of elements that will be stored when
we declare it.

datatype[] arrayName;

We will allocate the actual array.
arrayName = new datatype[size];

We will access a position within an array by using the
reference variable with the position inside brackets.

arrayName[position]= value;

Our Simple Problem
Since we’ve explored the idea of lists already,

let’s jump to the same example problem that
got us started there; what if you had to write

a program that would allow the user to
specify how many numbers they wanted to
enter, then read them in, and print them out

backwards?

4

What might we need to do?
Some of the steps are the same as when using an
ArrayList, but some are “new” to us:

– Declare some variables like an integer to store the answer

when we ask the user how many numbers they want to
enter and a variable to act as a reference to an array.

– Get the size request from the user.

– Allocate an array big enough to hold them all.

– Allow the user to enter those numbers one at a time and
store them in the array.

– Traverse through the array backwards and print them out.

What might we need to do?
• Declare some variables like an integer to store the

answer when we ask the user how many numbers
they want to enter and a variable to act as a
reference to an array.

– Get the size request from the user.

– Allocate an array big enough to hold them all.

– Allow the user to enter those numbers one at a time and
store them in the array.

– Traverse through the array backwards and print them out.

int[] dataArray;

int numberOfElements;

5

What might we need to do?
• Declare some variables like an integer to store the

answer when we ask the user how many numbers
they want to enter and a variable to act as a
reference to an array.

• Get the size request from the user.

– Allocate an array big enough to hold them all.

– Allow the user to enter those numbers one at a time and
store them in the array.

– Traverse through the array backwards and print them out.

int[] dataArray;

int numberOfElements;

numberOfElements = sc.nextInt();

What might we need to do?
• Declare some variables like an integer to store the

answer when we ask the user how many numbers
they want to enter and a variable to act as a
reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them all.

– Allow the user to enter those numbers one at a time and
store them in the array.

– Traverse through the array backwards and print them out.

int[] dataArray;

int numberOfElements;

numberOfElements = sc.nextInt();

dataArray = new int[numberOfElements];

6

What might we need to do?
• Declare some variables like an integer to store the

answer when we ask the user how many numbers
they want to enter and a variable to act as a
reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them all.

• Allow the user to enter those numbers one at a time
and store them in the array.

– Traverse through the array backwards and print them out.

int[] dataArray;

int numberOfElements;

numberOfElements = sc.nextInt();

dataArray = new int[numberOfElements];

for (int i=0; i<numberOfElements; i++) {

dataArray[i] = sc.nextInt();

} //I am using “i” to make this fit page

What might we need to do?
• Declare some variables like an integer to

store the answer when we ask the user how
many numbers they want to enter and a

variable to act as a reference to an array.

• Get the size request from the user.

• Allocate an array big enough to hold them all.

• Allow the user to enter those numbers one at
a time and store them in the array

int[] dataArray;

int numberOfElements;

numberOfElements = sc.nextInt();

dataArray = new int[numberOfElements];

for (int i=0; i<numberOfElements; i++) {

dataArray[i] = sc.nextInt();

} //I am using "i" to make this fit page

for (int i=numberOfElements-1; i>=0; i--){

System.out.print(dataArray[i] + " ");

} //I am using "i" to make this fit page

7

Length of an Array
After allocating an array, we could have a variable that
contains the size we requested.

In some languages (including Java) an array will have an
instance variable within the object that stores the size, but
some other languages (like C++) do not, so we need to keep

track of it.

• In Java, if you can access the size of the array via the
instance variable length. arrayName.length

• The .length field is a read-only value, so you cannot grow

an array by changing this number!

Other differences from ArrayList
An array can hold either primitives data directly or
hold references to objects.

When an array is created, each position of the array
is initialized with a default value.

– If it is an array of object references, they are all initialized
to null.

– If it is an array of primitive values, numeric ones are
initialized to 0, boolean is initialized to false, and char is
initialized to the null character.

8

Some operations on an Array
You can allocate and initialize an array at the same
time if you know all of the information in advance.

int[] firstFivePrimes = {2,3,5,7,11};

Remember that the variable we are using is a
reference to an object. The following just makes a
copy of the reference.

int[] notCopied = firstFivePrimes;

We'll look at three types of array copies a little later in
our discussion.

"Growing" an Array
We can't really grow an array once it has been allocated, but what we can do
is allocate a new array, copy the information from the old one into the new

one, and move the array reference to point to this new array object.

Imagine we have an array named myData and we want to make it twice as

large without losing existing data…

int[] tempName = new int[myData.length*2];

for (int i=0; i<myData.length; i++){

tempName[i] = myData[i];

} //I am using "i" to make this fit page

myData = tempName;

Note that this is the type of thing done behind the scenes when an
ArrayList needs to grow.

9

Array of Objects
Array elements can be references to objects as well. If so, the

array will hold the references to those objects, not the actual
objects.

String[] topTwo = {"EpVII", "Avatar"};

StringBuffer[] topTwo = new StringBuffer[2];

topTwo[0] = new StringBuffer("EpVII");

topTwo[1] = new StringBuffer("Avatar");

String[] topTen = new String[10];

//fill them in…

Reference, Shallow, Deep Copies
Reference Copy

Student[] array1 = new Student[10];

//some code here which fills in the array with data

Student[] array2 = array1;

Shallow Copy
Student[] array1 = new Student[10];

//some code here which fills in the array with data

Student[] array2 = new Student[array1.length];

for (int i=0; i<array1.length; i++) {

array2[i] = array1[i];

} //I am using "i" to make this fit page

10

Reference, Shallow, Deep Copies
Deep Copy

Student[] array1 = new Student[10];

//some code here to fill in the array with data

Student[] array2 = new Student[array1.length];

for (int i=0; i<array1.length; i++) {

array2[i] = new Student(array1[i]);

} //I am using "i" to make this fit page width

What is the danger in the above approach that neither
reference nor shallow copies faced?

Arrays class
There is a useful library class Arrays which contains

a variety of static methods.

One subset of these that can be useful when
exploring arrays is the group of toString()
methods which take an array and generates an
ASCII visualization of that array.

We can use this to easily see the contents of an array.
System.out.println(Arrays.toString(array1));

11

An array as an argument
A reference to an array can be passed as an argument into a

method.

You do NOT specify the size of the array since the array itself
isn't really being passed into the method, just the reference
to it.

Once the reference to the array is passed into a method, that
method can access and alter the elements stored within the
array.

Let’s look at ArrayParameter.java and
ArrayParameterDriver.java

Let’s look at some code…
http://www.cs.umd.edu/class/fall2019/cmsc131

-010X/Notes/Code/ArrayParameter.java

http://www.cs.umd.edu/class/fall2019/cmsc131
-010X/Notes/Code/ArrayParameterDriver.java

12

initArray1

1. 999999999

2. 012345678

3. Not Sure

initArray2

1. 999999999

2. 012345678

3. Not Sure

13

"Privacy" Issues
We’ve discussed some of the issues of data privacy in
an object-oriented language like Java.

With arrays, even though the size of the array is
immutable, the contents aren't, so even immutable
objects are “tricky” since you could replace the object
itself in an array once you had a reference to the array
even if the array reference itself was final.

– There is no way to make the contents of an array
immutable in Java.

Copyright © 2010-2019 : Evan Golub

