
1

CMSC131

Intro to Generic Data Structures: ArrayList

A Simple Problem?
What if I asked you to write a program that

would allow the user to specify how many
numbers they wanted to enter, then read

them in, and then be able to print them out
backwards?

2

Which of the following terms have
you heard?

A. Stack

B. Queue

C. List

D. Array

E. Data Structure

General Purpose Data Structures
Imagine creating some sort of “list” class with the
ability to add things, remove things, have it grow and
shrink as needed, search for things, etc. The type of
information being held in the list should not matter
much and we should not have to write a new version
for each possible type of data it would hold

– Again, we’ve seen that Java needs everything we

declare to have a specific type, and so we will use
Generics again!

3

ArrayList<Type>
A useful polymorphic data structure provided by Java
is a general-purpose, array-based, resizable list
called an ArrayList that can hold any type of object
you specify.

– It is a Generic structure, and you can specify what
<Type> of references a specific instance of ArrayList
will be allowed to hold.

– This can be better in the long run than a data structure
designed to simply allow references to any type of object
to be stored since this array will allow for compile-time
type checking and make it easier to invoke methods
using the objects that were stored in the list.

ArrayList Behaviors/Properties
Once created, an ArrayList object can use instance
methods to do things such as add, remove, and
search.

It has similarities to the StringBuffer class in terms
of memory management behind the scenes.

– An initial internal list size is allocated, the object keeps
track of how much of that space has been used, and
when the object runs out of room, the class takes care of
allocating a larger sized list, copying things from the
smaller list space into that larger list space, and then goes
on as before.

4

ArrayList Differences
While similar to the StringBuffer class in terms of
memory management, there are diffferences.

– Unlike with StringBuffer, we can not access the
current capacity information.

– We are provided with an instance method
ensureCapacity(#) that can be used by a
programming before they are about to do a large number
of additions; it will grow the internal structure to at least
that size and copy things over in a single operational unit.

Declaring and creating an ArrayList
//Declare a reference.

ArrayList<Double> arrName;

//Create a new ArrayList object and

// store the reference.

arrName = new ArrayList<Double>();

5

Adding references to an ArrayList
The ArrayList has instance methods that allow you to add

new items to the end of the list.

//Directly with literal values

//(Java will box the literal values)

arrName.add(1.1);

arrName.add(2.3);

arrName.add(37.1);

//Using Double objects we explicitly create

Double d = new Double(3.14);

arrName.add(d);

Another way to add an item
Another way that you can add an item to an
ArrayList is to specify a position within the list.

– It will then shift anything at that position or beyond over

one additional space to make room for the new value,
and then insert the new value.

arrName.add(1.1);

arrName.add(2.3);

arrName.add(0, 37.8);

System.out.println(arrName);

6

ArrayList adds are “shallow” ones
//The following will result in a list

// with two values stored, but those

// values will both be references to

// the same Float object on the heap.

Double d = new Double(3.14);

arrName.add(d);

arrName.add(d);

//Since Double objects are immutable,

// not an issue.

Result of “shallow” adds…
ArrayList<Student> myStudents;

myStudents = new ArrayList<Student>();

Student one = new Student("AAA");

myStudents.add(one);

myStudents.add(one);

System.out.println(myStudents);

one.setUID(123456789);

System.out.println(myStudents);

//Student is mutable – is the behavior

//what you wanted?

7

Removing references from an ArrayList

There are two ways to remove an individual item from
an ArrayList; using a reference to the object in the

list that you want to remove or specifying its 0-based
index position number in the list.

– While they both would remove an item from the list, they
have different return values; removing by providing a
reference to the object returns a boolean value

indicating whether that item was in the list but if done by
specifying the position whose value to remove it returns a
reference to the object that was removed.

ArrayList<Student> arrName;

arrName = new ArrayList<Student>();

Student one = new Student("BBB");

Student two = new Student("CCC");

Student three = new Student("AAA");

arrName.add(one); arrName.add(two); arrName.add(three);

System.out.println(arrName);

arrName.remove(1); System.out.println(arrName);

arrName.remove(three); System.out.println(arrName);

Code: removing items

8

Using the contains method
Another instance method is contains which takes a
reference to an object and returns a boolean value

indicating whether that object is in the list.
– What do you think will be printed by the following code segment? True

or False?

Student one = new Student("AAA");

myStudents.add(one);

Student seek = new Student("AAA");

System.out.println(myStudents.contains(seek));

Using the get method
Another instance method is get which takes a 0-

based index position and returns a reference to the
object at that position.

– Note that this is a reference to the object in the list, not a copy of that

object, so any changes we make will impact the contents of the list.

Student ref = myStudents.get(3);

ref.setUID(987654321);

//The object referenced from within the

// list has its UID altered.

9

Type checking: ArrayList<Float>
ArrayList<Float> arrName;

arrName = new ArrayList<Float>();

//These lines would NOT compile.

arrName.add("hi"); //String not Float

arrName.add(17.6); //Double not Float

//We could declare a Student

Student s = new Student();

//But we could not add it to this list.

arrName.add(s); //Student not Float

Length of an ArrayList
Every time a successful add or remove is performed,
the logical size of an ArrayList changes.

– The current logical length can be obtained using the
size() instance method.

The actual length behind the scenes cannot be
accessed. We can avoid some inefficiency in how
the class grows the list by calling that
ensureCapacity(#) method before a large

number of additions are to be done.

10

Copying an ArrayList
//NOTE: This is a shallow copy of the list.

ArrayList<Integer> newArr;

newArr = new ArrayList<Integer>(oldArr);

What will Fred’s score be in yourList?

A. 0

B. 50

C. 80

D. Something else.

ArrayList<Student> myList = new ArrayList<Student>();

Student myStudent = new

Student("Fred","Fred",123121234);

myList.add(myStudent);

myStudent.setScore(80);

ArrayList<Student> yourList = new

ArrayList<Student>(myList);

myStudent.setScore(50);

11

Iterating through an ArrayList
We can iterate through an ArrayList using a

standard for loop.

int length = arrName.size();

for (int i=0; i<length; i++) {

//process the object that arrName.get(i)

// returns during a given loop iteration

}

Another way we can iterate…
However, the ArrayList<Type> class is a Java

Collection and this means that we can iterate through
each of the individual elements of an
ArrayList<Type> object using the syntax of a "for

each" loop:

for (Typename iteratedVal : collection) {

//process the object to which iteratedVal

// refers at the moment

}

12

“for each” example:
for (Integer val : arrName) {

System.out.print(val + " ");

}

System.out.println();

NOTE: You cannot alter the structure of a list while iterating through

it using a for-each style loop.

If you want to perform that type of operation, you would need to create

a duplicate of the list and iterate through that one while altering the

other.

One way to delete all even numbers
ArrayList<Integer> shadow;

shadow = new ArrayList<Integer>(actual);

for (Integer val : shadow) {

if (val%2 == 0) {

actual.remove(val);

}

}

NOTE: Since the data type of val is Integer rather than int, the correct

remove (the one that takes a reference to the object to remove) is called.
The remove call returns a boolean value but we have no use for it in this

context so ignore it.

13

What will print at the end?

A. 0,1,2,3,4,5,6,7,8,9

B. 1,3,5,7,9

C. It won’t compile.

D. It will crash before it gets to printing.
ArrayList<Integer> arrName =

new ArrayList<Integer>();

for (int i=0; i<10; i++) {

arrName.add(i);

}

for (Integer val : arrName) {

if (val%2 == 0) arrName.remove(val);

}

System.out.println(arrName);

Making a deep copy of an ArrayList
//Assuming origList has already been created

// and populated.

ArrayList<StringBuffer> dupList;

dupList = new ArrayList<StringBuffer>();

for (StringBuffer str : origList) {

dupList.add(new StringBuffer(str));

}

14

Using Iterator objects
We can iterate through each of the individual elements
of an ArrayList<Type> object explicitly using an
Iterator:

Iterator<Type> valIter = list.iterator();

while (valIter.hasNext()) {

Type curr = valIter.next();

//process curr as desired

//NOTE: ArrayList iterator will allow

// processing to include remove calls

// without it causing an exception.

}

Sorting a list of items
There are times when we have an unordered list of items

but want to sort them based on some field that has a
natural ordering to it.

There are a wide variety of algorithms that can be used to
sort items and they have their pros and cons. However,
what if we didn’t want to have to write one and were
happy to let the authors of the ArrayList class provide

one for us?

– All we would need to do is tell it how to decide the
relative order of two items.

15

Using the sort method in ArrayList
ArrayList<Student> arrName;

arrName = new ArrayList<Student>();

Student one = new Student("BBB");

Student two = new Student("CCC");

Student three = new Student("AAA");

arrName.add(one);

arrName.add(two);

arrName.add(three);

System.out.println(arrName);

arrName.sort(Student::compareTo);

System.out.println(arrName);

Copyright © 2010-2019: Evan Golub

