
1

CMSC131

Introduction to “Generics” Concept

Example Data Structure: Pair

In Java, a method can return more

than one value.

A. True

B. False

2

A Simple Problem
When we say that a method can only return

one value, we are being very literal. It can
only return a single primitive or reference.

What if I asked you to write a program that had

various methods that needed to return a pair
of values, in this case we’ll say of the same
data type as each other?

General Purpose Data Structures
Imagine building a Pair class with the ability to store

references to two objects of the same data type.

The constructor could be sent references to the two
objects and store them. The getters could return those
references. A single object could “hold” two things.

– References use the same amount of space in memory,
regardless of the size of the object to which they refer.

– Java makes use of everything we declare having a specific

type at compile time for checking for valid commands.

3

Polymorphism and Generics
One of the powerful paradigms used in object oriented
programming is being able to have a common structure
that can be used with a wide variety of data types.

This is one form of what is known as polymorphism,
specifically parametric polymorphism.

– In Java, this can be supported by something called
Generics to effectively build a template than can be
instantiated in many ways.

Pair<Type>
Pair is an example class that I’ve
created for demonstration purposes,
though it could be useful. It can hold two
references to any type of object that you
specify.
– It is a Generic structure, and you can specify

what <Type> of object references a specific
instance of Pair will be allowed to hold.

4

Why not totally generic?
Having a template where the programmer can
state the data type being used in a particular
Pair can be better than simply allowing two

references to any object type to be stored.

– Specifically, this approach will allow for compile-time
type checking and make it easier to invoke methods
using the objects that were stored in the list.

– We will see a way to make this totally generic later,
and some of the related coding challenges.

Pair behaviors/properties
When created, a Pair object’s constructor
must be sent two references (to objects of the
proper type).

Once a Pair object exists, in this class
example, we have getters getRefToFirst()
and getRefToSecond() that can be invoked
using a reference to the Pair object.

5

Getting around the return limitation…
We now have a way to return more than one value
from a method. Utilizing this Pair object, we can
return a pair of object references with the return
value of a method, circumventing the fact that
Java only supports returning one value – we
return a reference to a single object that contains
references to two others!

This is another example of the power of objects.

Generics and Primitives
Recall that every primitive type (int, double,

etc.) as an object-based wrapper version in
Java (Integer, Double, etc) and that Java

will do a variety of automatic boxing and
unboxing of these.

We could make use of this aspect of Java by
(for example) being able to create a Pair of

Double.

6

Declaring and creating a Pair
//Declare a reference.

Pair<Student> twoStudents;

//Create some Student objects.

Student s1 = new Student("Pat");

Student s2 = new Student("Sam");

//Create a new Pair object to hold

// references to them and store the

// reference to that new object.

twoStudents = new Pair<Student>(s1,s2);

Using the Pair
Recall, that Pair has instance methods that allow

you to access the items.

System.out.println("First was " +

twoStudents.getRefToFirst());

System.out.println("Second was " +

twoStudents.getRefToSecond());

Note, in my implementation the constructor and getters just
copy the references. These are what we have been calling
shallow copies.

7

Which do you think Pair should have?

A. Deep copies of the two values.

B. Setters like setRefForFirst.

C. The ability for a heterogeneous pair.

Copyright © 2016-2019: Evan Golub

