
1

CMSC131

Exceptions and Exception Handling

When things go "wrong" in a program,

what should happen?

• Go forward as if nothing is wrong?

• Try to handle what's going wrong?

• Pretend nothing bad happened?

• Crash with meaningless messages?

• Crash with meaningful messages?

2

"When Good Code Goes Bad"
Some languages have an infrastructure for

approaching this.

In Java, we have Exceptions and Exception Handling.

We will say that an exception is "thrown" and that our
code might "catch" an exception when we "try" to
execute a piece of code than might cause an
exception to be thrown.

Exceptions
What sorts of "bad" things could happen to cause a portion of

code to throw (or raise) an exception?
– Math errors like dividing by 0 (some Java classes do throw an exception)

or rolling over the boundary of what values can be stored (Java doesn't
raise an exception).

– You try to follow a reference that doesn't point at anything (Java doesn't
really let these compile).

– You go beyond the boundaries of a data structure (we will see this with
arrays later).

– File-related errors like trying to open one that's not there or write to one
that's read-only, or trying to read beyond the end of it.

– Things specific to the logic of your application (Java has no problem with
assigning a date in the future but your program might think that's an error
if it is a birth date).

3

Exceptions in Java
• In Java, an exception is actually an object.

• The object will typically contain information about the
exception such as a message describing the type of
exception or even the cause of the exception. It might have
stack information to help you trace the error.

• Types of exceptions in Java include:
– ArithmeticException

– IOException

– NumberFormatException

– RuntimeException (fairly generic and can be used to hold any of the
above and more)

– Exception (really generic and can essentially be used to hold any
type of exception in well-written Java)

Exception Handling
try {

//code that might throw an exception

}

catch(Exception e) {

//code to deal with an exception being

// thrown when running the code

}

finally {

//code to run after attempt regardless of

// whether or not an exception was thrown

}

4

Catching Exceptions
It is worth noting that an exception does not need to be

"caught" right away.

If an exception is thrown, the exception will propagate its way
back through the call stack until either it is caught or it
reaches the top.

There is a type of hierarchy of exceptions where some can
“catch” others that they consider part of their umbrella.

For example, catching Exception will deal with any type of
exception but catching RuntimeException deals with those
exceptions as well as things like ArithmeticException but not

something like a PrinterException).

If any exception reaches the top of a program’s call stack
without being caught, it program will "crash".

Throwing Exceptions
We can create and throw our own exceptions in Java

(and several other languages).

We can use an existing exception type or build our
own once we learn about something called
inheritance later in the semester.

If we throw our own exception and nothing up the
stack catches it, the program will "crash" as a result
of it.

5

What will happen?
int i;

try {

i = 3.45F;

}

catch (Exception e) {

System.out.println("Bad Math!");

}

1. Won’t compile.
2. Will compile but then crash.
3. Will compile, throw an error, catch it.

Catching different exception types…
try {

//LINE(S) OF CODE HERE

}

catch (ArithmeticException e){ System.out.println("A " + e); }

catch (IOException e) { System.out.println("IO " + e); }

catch (NumberFormatException e) { System.out.println("NF " + e); }

catch (IndexOutOfBoundsException e) { System.out.println("B " + e); }

catch (Exception e) { System.out.println("E " + e); }

6

Expected Exceptions
In future courses you’ll see that there are

certain types of exception you expect to
happen, know how to handle when they do,

and can write programs that deal with them
and continue on successfully…

Copyright © 2010-2019 : Evan Golub

