
1

CMSC131

Creating a Datatype Class

Continued Exploration of Memory Model

Reminders
• The name of the source code file needs to match

the name of the class.

• The name of the constructor(s) need(s) to match
the name of the class and have no return type.

• Instance fields appear inside each object while
static fields are shared and live inside metaspace.

• Good style keeps fields private and provides
getters and setters as needed.

2

Classes and Instances of Objects
Let’s imagine we want to:

– Have some instance fields per object:

• Full Name (String)

• Nickname (StringBuffer)

• UID (String with “right” format)

• Midterm Score (float)

– Have some static fields at the class level:

• Keep track of how many have been created.

• Keep track of how many still around?

Declaring a new Class
The class needs to be in a .java file with the

same name as the class.

file: Student.java

public class Student {

}

3

When does the name of the .java file in which a public
class is defined have to match the class name?

A. Never

B. Usually

C. Always

Static vs Instance Fields
file: Student.java

public class Student {

//Instance Fields

private String name; //a reference

private StringBuffer nickname; //a reference

public String uid; //###-##-####

private float semesterScore; //a primitive

//Static Fields - must be initialized here

private static int currentCount = 0;

private static int overallCount = 0;

}

NOTE: The uid is public in this example just so we can see the impact
that decision has.

4

Some Static Helpers
Before starting on the instance methods, we
will create two helpers to deal with the way we
would like to store formatted UIDs internally.

//See posted code for implementation details of

// these two methods.

private static String convertIntToString(int inVal)

private static int convertUIDToInt(String inVal)

Setters and Getters
A common style is to provide public methods known
as getters and/or setters for any fields with which you
want users to be able to interact. These should be
careful to make independent copies of things to avoid
data corruption within the objects. In this case, the
standard ones to provide are:
setName(String) getName()

setNickname(String) getNickname()

setUID(int) getUID()

setScore(float) getScore()

5

Code: Setters and Getters
public

void setName(String nameIn){

name=nameIn;

}

public

void setNickname(String nickIn) {

nickname=

new StringBuffer(nickIn);

}

public

void setUID(int uidIn){

uid=convertIntToString(uidIn);

}

public

void setScore(float scoreIn) {

semesterScore=scoreIn;

}//Note that our team decided on float.

public

String getName() {

return name;

}

public

String getNickname() {

return nickname.toString();

}

public

int getUID() {

return convertUIDToInt(uid);

}

public

float getScore() {

return semesterScore;

}

this
Within an instance method you can optionally refer to
“the object that invoked this method” using the
automatically created local reference this.

public void setName(String nameIn){

this.name=nameIn;

}

Without the use of this java looks for the “best”

variable with that name in the correct scope. Why
might that be a problem?

6

Local Shadow Variables
Within a method, if you declare a variable it will have
a “higher priority” if java is looking for the best match.

That means a local variable is “seen” by default over
a field of the object.

The following code works, but it is considered
poor/risky style. Do you see why?
public void setName(String name){

this.name=name;

}

Local Shadow Variables (II)
Within a method, if you declare a variable it will have
a “higher priority” if java is looking for the best match.

That means a local variable is “seen” by default over
a field of the object.

The following code does not work. Do you see why?
public void setName(String name){

name=name;

}

7

An additional modifier
For this class, let’s say we want to provide a modifier
that allows a Student object to have something

appended to the existing nickname…

public void appendNickname(String suffix) {

nickname.append(suffix);

}

Instantiating Class Objects

In order to usefully be able to create objects of

this type we will probably want to provide some
constructors.

– When a new instance of an object is created, its
instance variables can be initialized via a
constructor.

– There can be multiple constructors, each with
different parameter lists (this is known as
overloading a method).

8

Typical Style Constructor
The most natural would be one that takes in all
of the required information:
public Student(String nameIn, String nickIn, int uidIn)

but we will also create a few others as examples

of syntax and future usage.

Code: Typical Style Constructor
public Student(String nameIn, String nickIn, int uidIn) {

//Use our setters to initialize the fields.

// This allows us to avoid duplicate/redundant

// code in our class.

setName(nameIn);

setNickname(nickIn);

setUID(uidIn);

setScore(0);

//Increate the values in the static counters

currentCount++;

overallCount++;

}

9

Additional Constructor Options
//You can provide several constructors as long as their signatures

// are different. Java will call the "best" one automatically when

// a new object is requested.

public Student(String nameIn, int identIn) {

//Another constructor of the class can be invoked

// using the keyword this as a method name.

this(nameIn, DEFAULT_NICKNAME, identIn);

}

public Student(String nameIn) {

this(nameIn, DEFAULT_NICKNAME, DEFAULT_UID);

}

public Student() {

this("Anonymous"+currentCount,DEFAULT_NICKNAME,DEFAULT_UID);

}

Copy Constructor
There are times when an existing object is used to initialize a

newly created object, in which cases Java looks for a copy
constructor.

public Student(Student existingStudent) {

this(

existingStudent.getName(),

existingStudent.getNickname(),

existingStudent.getUID()

);

//What’s missing?

}

NOTE: We use getters to avoid having duplicate/redundant code and
because we were careful to have our getters not create aliasing risks.

10

Shallow copies in a constructor
What would the following version of a copy

constructor do in terms of memory?
name = existingStudent.name;

nickname = existingStudent.nickname;

UID = existingStudent.UID;

semesterScore = existingStudent.semesterScore;

Reference/primitive copies done of each field is called
a shallow copy. While this is fine for primitive
values and immutable objects, it can be risky with
mutable objects (like the nickname) is we had
wanted a fully independent copy made!

Instantiating Class Objects
With most classes we will need to both declare a
variable that will refer to an object and also instantiate
an object for it.

Student exampleStudent =

new Student("Fred", "Freddie", 123456789);

We could then access any public variables and
methods using "dot" notation.
exampleStudent.uid = "Not a valid UID.";

This is why it is suggested to make fields non-public; you “control” them.

11

Which of the following are contained as part

of the individual objects?
(click all that apply)

1. Reference to the name.

2. Reference to the nickname.

3. The UID as an integer.

4. Reference to the UID.

5. The currentCount integer.

6. The score as a float.

Draw what this example looks like…
What happens to the stack, the heap, and

metaspace when the following main method
executes up until the …?

public static void main(String[] args) {

Student exampleStudent =

new Student("Fred", "Freddie", 123456789);

…

}

12

Static Getters
file: Student.java

public class Student {

public static int howManyNow() {

return currentCount;

}

public static int howManyEver() {

return overallCount;

}

}

Standard toString() Method
Let’s look at two different ways to implement the string
construction in the body (blue vs green).

@Override public String toString() {

return

"Name: " + name + "(" + nickname + ")" +

", ID: " + uid +

" [" + semesterScore + "]";

"Name: " + getName() + "(" + getNickname() + ")" +

", ID: " + uid +

" [" + getScore() + "]";

}

13

Which style do you prefer?

A. Using the fields

B. Using the getters

"Name: " + name + "(" + nickname + ")" +

", ID: " + uid +

" [" + semesterScore + "]";

"Name: " + getName() + "(" + getNickname() + ")" +

", ID: " + uid +

" [" + getScore() + "]";

Java-expected equals Method
@Override

public boolean equals(Object otherObject) {
//The next three lines are things we will explore later.

if (otherObject == null) {return false;}

if (otherObject.getClass() != this.getClass()) {return false;}

Student otherStudent = (Student)otherObject;

//The code of interest to us right now.

return (

name.equals(otherStudent.name) &&

nickname.equals(otherStudent.nickname) &&

uid.equals(otherStudent.uid) &&

semesterScore==otherStudent.semesterScore

);

}

14

public vs. private
We will explore the reasons why we might make some variables
and methods public or private as we see more about object
oriented programming.

In the Student example, let us consider the uid value it stores.

– It is "sent" to the constructor as an int.

– The instance stores it as a String internally.

– If it is a private field then only methods within this class can access it directly.

– This means others can’t mess with the format and we could change how it is
stored and as long as the methods we write for the class are rewritten to

access the new storage decision, the "outside world" will never know the

difference.

Testing Your Class
When building a new class, you should test all

functionality it provides.

The posted StudentTesting class has some

examples that you can open in Eclipse and

explore…

15

Student objects in Code
To explore, you can go into Eclipse and look at a few code
examples where Student objects are created and used…

Student s1 = new Student();

Student s2 = new Student("Sam", 123456789);

Student s3 = new Student("Pat", "Patty", 987654321);

Student s4 = new Student(s3);

Student s5 = s3;

//What’s going on here in memory?

s3.appendNickname("IsCool");

s3.setScore(s3.getScore()+10);

//What’s going on here in memory?

s3 = new Student("New Student!!!", 345363267);

//What’s going on here in memory?

Copying Student objects
One place where we needed to think about whether

an object is mutable is when we talk about aliasing
and making copies of things.

Again, consider our copy constructor and what could
be happening in memory.

Our objects have:
String name

StringBuffer nickname

String UID

float semesterScore

16

Shallow Copies and Mutable Objects
Image a class that contains references to two student objects:

public class StudentPair {

Student stu1;

Student stu2;

…

}

Now imagine we had the following copy constructor:
public StudentPair(StudentPair other) {

this.stu1 = other.stu1;

this.stu2 = other.stu2;

}

If we then had code such as:
StudentPair sp2 = new StudentPair(sp1);

Where the new StudentPair created this way would contain aliases to the same
Student objects as the original one. If sp1.stu1 had a grade change,
sp2.stu1 would as well!

Deep Copies and Mutable Objects
Image a class that contains references to two student objects:

public class StudentPair {

Student stu1;

Student stu2;

…

}

Now imagine we had the following copy constructor:
public StudentPair(StudentPair other) {

this.stu1 = new Student(other.stu1);

this.stu2 = new Student(other.stu2);

}

We could then have code such as:
StudentPair sp2 = new StudentPair(sp1);

the new StudentPair created this way would contain a reference to different
Student objects as the original one. If sp1.stu1 had a grade change,
sp2.stu1 would NOT!

17

When objects go away…
Unlike in many other languages, java does not provide a way
to explicitly say you are done with an object. However, once
Java detects that there is no longer any way to access an
object, it can be deleted from memory during garbage

collection. When this happens, Java is supposed to execute
the object’s finalize method.
protected void finalize() throws Throwable

{

currentCount--;

super.finalize(); //Java-required, covered in 132.

}

Copyright © 2010-2019 : Evan Golub

