
1

CMSC131

Testing Overview

JUnit Testing

Software Testing
Testing is a critical part of the program design

and implementation process, and there are
different types of testing with different goals…

• Ideally you want to test all possible ways your
program can run and confirm that the output and
side effects are all correct.

• Testing individual modules can help identify flaws in
the “foundation” that should be fixed before other
things are built upon it.

2

Regression Testing
What happens if you thoroughly test a module and

then decide it needs to be modified at a later time?

– You might want to retest the entire module.

– You at least want to retest anything that depends on the
things that were changed.

It would be useful to have a way of "saving" your
testing scenarios and the checks used to confirm
that the output and side effects are correct.

Module Testing Approaches
There are many approaches..

– Manually run through scenarios and check results.

– Write test drivers and various input and output files for
comparison of actual to expected output.

– Use one of the xUnit family of tools such as JUnit in Java or
NUnit in .NET or CppUnit in C++, etc.

There are research projects exploring new and different
testing approaches (such as the GUITAR and ICE
projects here at UM).

3

How much time?
Think about your work on project 2.

– How much time was flowcharting and planning?

– How much time was turning that into Java code?

– How much time was debugging the resulting Java
code?

http://dilbert.com/strip/1995-11-13

What do you think the percentage of
project time/cost testing takes?

1. Less than 10%

2. 10%-25%

3. 25%-40%

4. 40%-60%

5. More than 60%

4

JUnit Testing (I)
We will now see a resource available in Java called

JUnit testing. Note: Automated testing is only one
part of the overall process of testing and quality
assurance. Each test is a method of the form:

@Test

public void testTest() {

//Code and tests here…

}

JUnit Testing (II)
Two basic test assertions sometimes used are:

assertTrue(boolean_expression);

assertFalse(boolean_expression);

These can appear anywhere in the body of a testing method.

If an assertion test succeeds, execution of the body continues.
If it fails, the test fails and execution of the body of that test

stops but if there are more test methods they are still run.

5

JUnit Testing (III)
assertSame(var_1, var_2);

This checks whether these two variables contain
the same values.

– For primitives this acts in a slightly unusual way
behind the scene but acts as expected.

– For object references, this essentially checks
whether the two object references "point" to the
same memory location.

JUnit Testing (IV)
assertEquals(var_1, var_2);

For primitives this acts as expected. For object
references this is an "interesting" one because it
uses a very specific form of the equals operator to
check whether these two variables are equal. If the
class of the objects passed in implement the exact
equals operator Java expects it works as expected.

NOTE: We will explore this more later…

6

Add a JUnit Test Case

A Test Set is a Class
import static org.junit.Assert.*;

import org.junit.Test;

public class MyTestCases{

//You put your test cases here. Each test

// method needs to have @Test above it.

}

7

What to test? How to design tests?
“Test Everything“ (very hard, but a useful target)
– Make sure that every method is tested (you only have direct

access to public methods, but you need to think about how
to test the private ones as well).

• Think about the "corner cases“ (lowest/first, highest/last, etc.).

• Try some random combinations of scenarios.

• Test for success but also test for error cases that are meant to be
handled.

– It would be good if you could make sure that every decision
branch is tested.

What to test? How to design tests?
It’s a good idea to write your tests (or at least some of

them) based on your specs rather than writing them
after you implement a module to avoid

When working with your clients or managers it can
also be useful to discuss your test cases with them
and see which scenarios they might notice as
missing.

We don’t need source code to test a module, we just
need the names of the public methods…

8

Example: Testing BigBoxOfInts
BigBoxOfInts()

Constructor builds a BigBoxOfInts that starts empty.

void addToBox(int newVal)

This method adds the given int to the BigBoxOfInts.

int howManyStored()

This method returns the number of things stored in the BigBoxOfInts.

void removeAllFromBox(int delVal)

This method deletes all copies of the given int from the

BigBoxOfInts.

void removeOneFromBox(int delVal)

This method deletes one copy of the given int from the BigBoxOfInts.

java.lang.String toString()

Returns a string representation of the BigBoxOfInts.

Test creating and simple adding.
@Test

public void testStartsEmpty() {

BigBoxOfInts myList = new BigBoxOfInts();

assertEquals(0, myList.howManyStored());

}

@Test

public void testAddOneThing() {

BigBoxOfInts myList = new BigBoxOfInts();

myList.addToBox(5);

assertEquals(1, myList.howManyStored());

assertEquals("[5]",myList.toString());

}

9

Test adding and removing.
@Test

public void testAddOneThingAndRemoveIt() {

BigBoxOfInts myList = new BigBoxOfInts();

myList.addToBox(5);

myList.removeOneFromBox(5);

assertEquals(0, myList.howManyStored());

assertEquals("[]",myList.toString());

myList.addToBox(5);

myList.removeAllFromBox(5);

assertEquals(0, myList.howManyStored());

assertEquals("[]",myList.toString());

}

More tests of adding and removing.

@Test

public void testAddManyThingAndRemoveOne() {

BigBoxOfInts myList = new BigBoxOfInts();

for (int val=0; val<5; val++) {

myList.addToBox(val);

}

myList.removeOneFromBox(2);

assertEquals(4, myList.howManyStored());

assertEquals("[0, 1, 3, 4]",myList.toString());

}

10

And test some more...

@Test

public void testAddManyThingAndRemoveSeveral() {

BigBoxOfInts myList = new BigBoxOfInts();

for (int val=0; val<5; val++) {

myList.addToBox(val);

}

myList.removeOneFromBox(2);

myList.removeOneFromBox(0);

myList.removeOneFromBox(4);

assertEquals(2, myList.howManyStored());

assertEquals("[1, 3]",myList.toString());

}

And test even more...
@Test

public void testAddManyWithDupsAndRemove() {

BigBoxOfInts myList = new BigBoxOfInts();

int copies=8;

for (int multiple=0; multiple<copies; multiple++) {

for (int val=0; val<5; val++) {

myList.addToBox(val);

}

}

myList.removeAllFromBox(2);

myList.removeAllFromBox(0);

myList.removeAllFromBox(4);

assertEquals(2*copies, myList.howManyStored());

String shouldBe = "[";

for (int multiple=0; multiple<copies; multiple++){

shouldBe += "1, ";

}

for (int multiple=0; multiple<copies-1; multiple++){

shouldBe += "3, ";

}

shouldBe += "3]";

assertEquals(shouldBe,myList.toString());

}

11

Some challenges with testing…
In 1990, software engineer / author Boris Beizer wrote about
what he called “The Pesticide Paradox”

– The idea is that writing a good set of tests should help detect bugs, but it
will likely miss some, and running the tests over and over won’t be of any

use in finding those particular bugs.

NOTE: Your tests themselves might contain bugs.

Also note that testing can’t really show that bugs don’t exist,
just that the scenarios you are testing it the way you are
testing them don’t fail, which is still important and shows why
test scenario selection is important…

Copyright © 2010-2018 : Evan Golub

