
1

CMSC131

Wrappers, Boxing and Unboxing,
Object (Im)mutability

Wrapper Classes
For reasons that we will explore more soon, Java
provides an object-based wrapper class for each
primitive datatype. Java will “box” or “unbox”
primitives to/from wrapper-based objects as needed
without an explicit request.

– The way these classes work, once an object of one of
these types is created, the values stored in them cannot be
altered. We call this type of object an immutable object.

– Recall that the String class also creates immutable

objects, and what that meant.

2

Primitive wrapper class details…
In Java, the wrapper classes for primitive types are fairly easy
to remember:

Java provides other classes called “wrappers” that are not
based on primitives, but when we talk about wrappers in this
class, these are what we mean.

Primitive Wrapper

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

An int and an Integer in memory.
int x = 10;

Integer y = 20;

STACK HEAP

y

x 10

20

3

Integer and String objects are immutable

In object oriented languages, some object types are
immutable or (as we’ll discuss later) effectively immutable.
Integer (and all wrappers) and String are examples.

These are data types where once an object is created, it is
designed to never have its data contents altered. A copy
based upon such an object with some differences in the
data can be made (as we have seen with methods such as

toUpperCase, concat, substring) but the original object is
untouched.

What about Integer objects?
The following two lines of code accomplish the same thing, similar to how

Java automatically created String objects for us:
Integer value1 = 8;

Integer value1 = new Integer(8);

The following line of code will cause value1 to refer to an Integer object
that contains 9:
value1++;

However, it’s NOT the same object as before!
Integer value1 = 8;

Integer value2 = value1;

value1++; //This will unbox the int,

// increment it, and rebox it.

System.out.println(value1 + " " + value2);

4

What will the output be?
Integer value1 = 8;
Integer value2 = value1;
value1++;
System.out.println(

value1 + " " + value2
);

Immutable Objects
With immutable objects, once the object is created, the

values it holds cannot be altered.

With an effectively immutable object, the values it holds
are not meant to be altered and no explicit means are
provides to alter them, but they aren’t 100%
protected again certain advanced things.

There are two big differences between immutable and effectively
immutable in Java.

– true immutable object types need all data fields to be declared as final

– there are rules regarding the way the constructors work that need to be
followed regarding them being thread-safe

5

Mutable Objects
Object types where information is publicly available

(and thus can change) or which provide public
setters are called mutable.

Different languages approach mutability in different
ways, so it is important to explore the conventions
of each language you learn.
– In Objective-C there are usually both mutable and

immutable versions of types.

– Though not an object, it's interesting to note that in
Fortran, even literals like 1 weren't always immutable!

What if we want mutable strings?
The String class in Java is immutable.

The StringBuffer class in Java is mutable.

Let's look at an example: StringHolder.java

It’s important to note that unlike classes such as String
and Integer, with StringBuffer we must explicitly create
a new object and then send any initial information to the
constructor.

6

The StringBuffer Class
Some key methods we can use are:

– append, which is overloaded in many ways

– insert, which is also overloaded in many ways

– delete, which allows you to delete any sub-part of the
string

– replace, which allows you to replace any sub-part of the
string with another string

These methods also return a reference to the
StringBuffer being modified.

http://download.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html

Mutability: Good or Bad?
While a significant issue, some might argue it's not

"too bad" since aliasing of mutable objects can be
"solved" by making deep copies when needed.

Are there any reasons why mutable objects would
actually be good in their own right?

Consider the posted example:

StringEfficiencyExample

7

What are the trade-offs?
What are the trade-offs involved in the previous
example?

– Time?

– Space?

– Other?

Let’s create a Data Object!
We will now begin to explore how to create a class
that will represent a data type. We will be able to
create objects based on this class.

For a start, we will want it to be able to have a getter
(method to retrieve the stored value) and a setter
(method to store a new value in the object) as well as
useful things such as a way to increment the value by
1 and a way to turn the value into a String for printing.

8

MutableInteger.java
public class MutableInteger {

private int value; //Note this is not static field.

public MutableInteger(int value_in) {

set(value_in); //Since we have a setter, we use it.

}

public int get() {return value;}

public void set(int value_in) {value=value_in;}

public int plusplus() {value++; return value;}

//We cannot overload an operator in Java, but this recreates the post++ behavior

public String toString() {

return Integer.toString(value);

//We can use the static toString method of the

// Integer class to convert an int to a String

}

}

Java Class: Color
There is an immutable class type called Color

in the Java AWT library.

• You can use references to pre-made Color

objects via static constant fields like RED

and BLUE.

• You can create a new Color object using a

specific combination of shades of red, blue,
and green.

9

Mutable Class: Grid
In an upcoming lab and upcoming project, you’ll be using
some classes we created here at UMD that stored things in a
Grid.

• When you create an object of this type, it will contain many
instance fields. Among them will be a two-dimensional data
structure that can hold Color objects.

• In the lab and project you will be implementing static helper

methods that are passed a reference to a Grid object, and
then “painting” images into it by setting row/col positions
inside the grid to certain colors.

Copyright © 2010-2019 : Evan Golub

