
1

CMSC131

More Details about Methods

Structured Programing
One common philosophy/style/paradigm in computer
programming is called “structured programming”
where the program is designed to be composed of
relatively small and logically self-contained blocks of
code.

In an object-oriented programming language like
Java, language elements such as classes and
methods and objects provide a powerful set of tools
that can help facilitate this style.

2

Classes, Methods, Objects
In our discussion of Java’s String class we saw that it was an
example of a class that described a structure to hold
information (String objects) as well as have operations that
can be performed on those objects (instance methods).

In our discussion of conditional statements and logic we saw
how a static method could be added to a class (the isOdd
method) to hold a block of code that might be used multiple
times, but that was not itself associated with a specific object.

Adding Methods
A class can essentially have as many static or

instance methods as you desire.

As we continue, we will explore the differences
between these in more detail.

For now, while we will discuss both, we will
only add static methods to our code
examples.

3

Why use methods?
We will add methods either to:

– Simplify the readability of our code.

– Reduce redundancy in our code (eg: if you
have a large block of code doing the same
thing in two places, maybe you should
create a method with that code and invoke
the method from the two places).

The main Method
Every Java example we've seen so far has been a class with a
meaningful name which contains a static method named
main as the starting point.

public class MeaningfulName {

public static void main(String[] args) {

//code goes here…

}

}

This is main method is a language convention to allow the
JVM to know where a program should begin. This method can
call other static methods, create objects, and use objects to
invoke instance methods.

4

Objects
We have seen a few examples where we instantiate an object

of a particular class and access members of those classes,
specifically with the Scanner class and the String class.

Scanner sc = new Scanner(System.in);

int x = sc.nextInt();

...

String answerHolder = sc.next();

answerHolder = answerHolder.toLowerCase();

The variables sc and answerHolder are references to
distinct objects with access to instance methods within their
classes.

Instance
When a method or field is not marked as static, it is an
instance one instead (no keyword used to denote that).

Instance methods have one copy of their code in existence,
but when executed they always have a specific object
associated with them; these methods are always invoked via

an object, and that object is the one associated with that
execution of the code.

Instance fields are created in memory every time an object is
created, and are logically connected with that object. Once the
object is removed from memory, all its instance fields are too.

5

String Objects
Within the String class, we are provided a number of

useful instance methods.

For example, .charAt(int) and .length()
Scanner sc = new Scanner(System.in);

String word = sc.next();

System.out.println("The length is " + word.length());

System.out.println("One character in it is " + word.charAt(2));

A reminder and a note on the above:
- The “0th” character would be the one we might (as humans) think of as first…

- If the user entered a one or two character word, this would crash! Why?

What letter is printed if the user enters

abcde ?

String word = sc.next();
System.out.println(word.charAt(2));

A. a

B. b

C. c

D. d

E. e

F. The program crashes…

6

Reminder: static vs instance methods
Static methods are associated with the class
as a whole, not specific object instances. We
will be discussing these more here.

Non-static methods (which we call instance
methods) are associated with a specific
object and can act upon things stored in that
one object when invoked. While we are using
these, we are not creating our own yet.

Static Method Prototype
public static return_type method_name (parameter_list) {

body_of_method

}

All of our static method definitions will follow the
above syntax.

– You choose the appropriate return type.

– You choose the meaningful method name.

– You choose what information needs to be passed into the
method.

Note: If something isn't passed into the method, that method doesn't
know about it even if another method, even the main method, does.

7

Reminder: static method
public class SimpleDoWhileWithMethod {

public static void main(String[] args) {

int userValue;

Scanner sc = new Scanner(System.in);

do {

System.out.print(

"Enter an odd number to continue: "

);

userValue = sc.nextInt();

} while (!isOdd(userValue));

System.out.println("Thank you.");

}

public static boolean isOdd (int num) {

return (num%2)!=0;

}

}

Memory Model
Memory is organized into three logical regions

in Java; the stack, the heap, and metaspace .

We will start to discuss these more now, since
understanding where things “live” in memory

can help understand why certain things work

the way they do with methods and with objects.

8

Objects, instance methods, memory…
Consider the following code segment:

String firstName = "Evan";

String lastName = "Golub";

…

firstName = firstName.toLowerCase();

lastName = lastName.toUpperCase();

…

What do firstName and lastName now contain
if we were to print them? Let’s draw this in
memory…

public class DoSomeMath {

public static void main(String[] args) {

int x;

int y;

int z;

x = 17;

y = 23;

z = 14;

printSum(x,y);

printSum(y,z);

}

public static void printSum(int first, int second){

System.out.println(first+second);

}

}

DoSomeMath.java example

9

Variables
In the DoSomeMath example, there were some local variables…

declared
int x;

int y;

assigned to
x = 17;

y = 23;

and used
printSum(x,y);

In short, variables have a data type (such as int) and refer to space within the
computer’s memory where their values (such as 17) are stored.

You can assign values to them and read those values back out from them.

public class DoSomeMoreMath {

public static void main(String[] args) {

int x, y;

x = 17;

y = 23;

printSum(x,y);

printProd(x,y);

printQuot(x,y);

printQuot(y,x);

}

public static void printSum(int first, int second){

System.out.println(first+second);

}

public static void printProd(int alpha, int beta){

System.out.println(alpha*beta);

}

public static void printQuot(int alpha, int second){

System.out.println(alpha/second);

}

}

At-home exercise: trace DoSomeMoreMath.java

10

AddOne.java example
public class AddOne {

public static void main(String[] args) {

int x;

x = 17;

System.out.println(x);

printPlus1(x);

System.out.println(x);

}

public static void printPlus1(int val){

val = val + 1;

System.out.println(val);

}

}

Draw the memory model now to trace this.

Have an answer ready…

What will that print?

A. 17, 17, 17

B. 17, 18, 17

C. 17, 18, 18

D. 17, 18, 19

E. Something else.

11

When calling methods…
Two key things to always consider:

– If the method returns a value, then the statement that
calls it should deal with that value somehow (use it,
store it, etc).

– The calling statement's argument list needs to match
up with the method's parameter list by data type.

• In some situations, Java can detect a mismatch and
automatically convert the argument so that its data type
matches that defined by the method as the required
parameter type.

Static Fields
Similar to how a class can have static methods that are not
associated with any particular object, a class can also have
pieces of information (fields) that are not associated with any
particular object but rather with the class as a whole.

– This is useful when you have some information related to the class as

a whole; different objects do not have different values. This is
sometimes referred to as shared information.

One thing that is important to pay attention to is your naming
convention. If a local variable within a method has the same
name as a field of the class, the local variable will "hide" that

field within the scope of that method.

12

Exploration Program: What will it print?
public class ExploreStaticVariables {

static int howManyOdd=0, howManyEven=0;

public static void main(String[] args) {

for (int count=0; count<10; count++) {

System.out.println(count + " " + printParity(count));

}

System.out.print("I saw " + howManyOdd + " odd.");

System.out.println(" I saw " + howManyEven + " even.");

//What do you think will be printed here?

//Draw the memory model to trace this... Have an answer ready...

}

public static String printParity (int num) {

String retStr="";

int howManyEven=0;

if ((num%2)!=0) {howManyOdd++; retStr+="is odd.";}

else {howManyEven++; retStr+="is even.";}

return retStr;

}

}

At the end, what will it print?

A. I saw 0 odd. I saw 0 even.

B. I saw 5 odd. I saw 0 even.

C. I saw 0 odd. I saw 5 even.

D. I saw 5 odd. I saw 5 even.

E. Something else.

13

Static Overview
When a method or field is marked as static there is a single
one of them that is available to be used.

– If multiple parts of the program have access to them, then all parts of
the program share that single one.

– Once created they continue to exist until the program terminates.

Static methods have no specific object associated with them.

Static fields are created in memory the first time that the JVM
loads their class and are never removed from memory.

Copyright © 2010-2019 : Evan Golub

