
1

CMSC131

Some guidelines for naming
identifiers (variables, constants,
etc) and formatting your code.

NOTE
Please note that this slide deck is an at-home
required reading. The style conventions are
important, but this material doesn’t make sense
as an in-class lecture when you can simply
read these and review them while you are
writing programs for this and other classes.

2

Naming Identifiers (I)
There are some Java-enforced rules like…

– The first character must be a letter, the
underscore or a dollar sign.

– Names are CaSeSensitivE

– There are reserved words that you cannot
use (such as if, else, class, etc.)

– Names cannot contain certain special
characters (such as -, %, +, &, !, etc.)

Naming Identifiers (II)
There are naming conventions for you to follow:

– Don't start a name with a $ (this is usually an indication of a
system-level identifier in Java).

– Don't differ identifiers JUST by CasE. int Value, VaLue;

– Use meaningful names (eg: the name should express what is
being held in the variable).

– Use English words (at least when coding here).

– This isn't Twitter ☺ so please don't go too crazy dropping
vowels and consonants.

– Use "Camel Case" name formatting.

3

"Camel Case"
Variable names and method names start with lower case
letters. Class and interface names start with upper case
letters.

Each word other than the first word starts with an upper case
letter.

int myFirstInteger;

public class MyFirstClass {

Constants are ALL UPPERCASE with underscores between
words.

final int DAYS_IN_A_WEEK = 7;

Speaking of CONSTANTS…
If there is a value that we will be using that will never
have to change while our program is running, it
should really be stored in a meaningful constant
(also known in Java as a final variable).

– Even if you only plan to use it ONE TIME we want you to
do this.

– Even if it is a simple "flag" condition (type 1 for cat, type 2
for dog, …) we want named constants like
final int CAT_CHOICE = 1;

…

if (userInput == CAT_CHOICE) { …

4

Other formatting conventions…
Use placement of braces { } as you have seen in the posted
full examples.

Use indenting similar to what you have seen in my posted
examples.

– If in doubt, Eclipse can help you if you highlight your code and then
press Control+I (it will autofix your indentation).

Don't have any lines that are longer than 80 characters long
(that includes spacing).

Valid versus Good Style
1. For – valid but not good style

2. success% - invalid due to %

3. x – valid but might not be good style depending on
context

4. i – valid but might not be good style depending on
context

5. o – valid but likely not good style

6. starting_val – valid and likely good style

5

Copyright © 2010-2019 : Evan Golub

