
1

CMSC131

Characters, Strings

Scanner Methods

Characters versus Strings
In Java:

"S" is a String object of length 1

'S' is a char primitive (characters are always
“length” of 1)

This “strong typing” and distinction between the
two differs from some other languages (like
Python), and we will explore the reasons now
and as the semester continues.

2

The String type
The String data type is not a primitive type in Java, is what we
call a Class and when we declare one to use it is called a
reference to an object.

– We will discuss these ideas more later, but for now
imagine that a variable holding a reference to a String
object knows where the actual String object lives in
memory. That object will store information.

– A String object is what’s known as immutable; once it is
created it can be read but cannot be altered.

The String type
As we saw earlier, you can concatenate two
String objects using the + operator but the +
operator can also be used for math operations.

The left operand "decides" which form of + is
being used.

3

Some Special Character Values
• single quote: \'

• double quote: \"

• new line (cr/lf): \n

• tab: \t

• single backslash: \\

Creating String objects
There are two ways to create String objects in Java; implicitly
and explicitly.

– If you surround keyboard characters with " " Java will automatically
create a String object using the contents. This means that it is valid to

do:

String myStr = "Hello World!";

– However, in general, when you want a new object in java you ask for a

new one to be created, and if there is some initial information you want
stored, you specify it and something called the class’ constructor is
used to initialize the contents:

String myStr = new String("Hello World!");

4

SomeStrings.java example: Part 1
public class SomeStrings {

public static void main(String[] args) {

String name1 = "Sam";

String name2 = "Pat";

System.out.println(name1+" "+name2);

System.out.println("Hi\nThere\tClass\\\\\n\n");}

}

SomeStrings.java example: Part 2
public class SomeStrings {

public static void main(String[] args) {

String name1 = "Sam";

String name2 = "Pat";

char letter = 'A';

int number1 = 14;

float number2 = 17.5F;

System.out.println(name1+letter+number1+number2);

System.out.println(name1+letter+(number1+number2));

}

}

Will the same thing be printed twice in a row by the
above or will the two print statements create different
output than each other?

5

Will the output be…

A. The Same

B. Different
String name1 = "Sam";

String name2 = "Pat";

char letter = 'A';

int number1 = 14;

float number2 = 17.5F;

System.out.println(name1+letter+number1+number2);
System.out.println(name1+letter+(number1+number2));

Fastest Responders

Seconds Participant Seconds Participant

6

Strings and Methods
In object-oriented languages, a class can be used to

describe a structure to hold information (objects) as
well as operations that can be performed (methods)

and will often serve a dual-purpose of doing both

(describing the structure of the object and the

operations that can be performed on them).
– We looked at primitive values and are now looking at the String class

provided by Java. For some things Java allows operators to be used

with this class (such as +) but in other situations, we will need to make
use of a method from the class.

Instance Methods
A method is basically a way of expressing that a block of code can be

called and executed which also provides a way for information to be
given to that block of code as well.

An instance method is one that is invoked using a particular object, and
that therefore has access to the information within that particular object.

When we have called System.out.println() we've been having an
object System.out invoke the method println. That method knows

the object that invoked it and is able to make use of it. The net result in

that example is the printed text is displayed "to" the output stream that
System.out refers to (rather than to somewhere else).

7

String Comparison
String objects are compared using Methods rather

than Operators.
string1.equals(string2) will return a boolean value

string1.compareTo(string2) will return an integer value
using the following rules based on the lexicographical
order of the strings:

• If the result is less than 0 string1 precedes string2

• If the result is equal to 0 string1 matches string2

• If the result is greater than 0 string1 succeeds string2

NOTE the negative value doesn't have to be -1 and the positive
value doesn't have to be +1

Uppercase/Lowercase Conversions
The String class provides instance methods named
toUpperCase() and toLowerCase() that do

almost what they sound like.

– REMINDER: In Java, once you create a String object,

the contents are not allowed to be changed.

If you have an existing String object and use it to
invoke toUpperCase() then that method will return

a reference to a brand new String object which

contains the uppercase version of the original one.

8

Upper.java example
public class Upper {

public static void main(String[] args) {

String name = "Sam";

name.toUpperCase();

System.out.println(name);

String uName = name.toUpperCase();

System.out.println(uName);

}

}

What will be printed by each of the above?

Static Methods
A static method is one that is invoked using the name of a class rather than

a specific object reference, and that therefore has no access to
information held within particular objects.

As an example in the String class, it provides a static method called
valueOf(float f) that takes a floating point value as a parameter

and returns an object holding a character-based representation of that
numeric value. This could appears as:

String result = String.valueOf(3.141592);

The variable result stores the object reference returned by the static

method. No existing object was used or needed.

9

Input using the Scanner class
The Scanner class is included as part of the utility

libraries available in Java 5.0 and later but we need
to import it to make use of it in a Java program.

import java.util.Scanner;

It allows us to obtain data from an input source (such

as a keyboard) and also “convert” that data into the

format of different Java types via instance methods.

Creating and Using
We will need to declare and create a Scanner object:

Scanner myScanner = new Scanner(System.in);

We can then use any of the Scanner class methods to read (and
“convert” data) such as…
– nextBoolean()

– nextFloat()

– nextInt()

– next()

//reads/returns characters until next whitespace

– nextLine()

//reads/returns characters until the end of the input line

10

SimpleInput.java example
import java.util.Scanner;

public class SimpleInput {

public static void main(String[] args) {

Scanner myScanner = new Scanner(System.in);

int i;

float f;

String s;

i = myScanner.nextInt();

System.out.println("The integer was a " + i);

s = myScanner.next();

System.out.println("The next \'word\' was " + s);

s = myScanner.nextLine();

System.out.println("Rest of the line was " + s);

}

}

Copyright © 2010-2019 : Evan Golub

