
1

CMSC131

Introduction to your Introduction

to Java

Why Java?
It’s a popular language in both industry and many

introductory programming courses.

It makes use of programming structures and techniques
that can be transferred to using a wide variety of
other languages.

Development on different OS platforms without
platform-specific differences for what we will be doing
is more straight-forward.

2

Phrases you might hear…
Garbage collection

– …when we talk about requesting memory to hold
information for our program to use…

Cross-platform executables
– …the modules we build and even full applications can be

used under different operating systems due to the Java
virtual machine…

– …it is possible to build to a specific platform to take
advantage of native code and the related advantages, but
we won’t…

The JVM
We won’t use the Java compiler to compile to the machine

code of an actual physical machine’s architecture, but rather
to “bytecode” which is run on a Java Virtual Machine.

If you compile a JVM for a new operating system, then (in
theory) all of your existing Java programs could run there
too.

Again, there are times when (for efficiency) Java bytecode is
actually compiled to a specific architecture’s machine code
(but is no longer portable).

3

Java to Bytecode to Execution

http://support.novell.com/techcenter/articles/img/ana1997070102.gif

Java is designed for large projects
One of the initial disadvantages to using Java is that a

simple “one-line program” to print something like
“Hello World!” is one line of code to accomplish that
plus several lines of code to provide the framework
that an object-oriented programming language like
Java typically requires.

Everything in Java must live in a Class. The code that
is meant to be the starting point of the program must
live in a Main Method.

4

HelloWorld.java example
public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

When compiled and executed, this program

displays (to the terminal) the phrase in

quotation marks.

Output
We will often use text-based output, especially for initial

debugging, and see two basic options for sending text to the
console:

System.out.println(thing_to_print);
System.out.print(thing_to_print);

Both are sent something to display. The difference between the
two is that the first one adds an “end of line” character at the
end of whatever it has sent to the console.

You can request the contents of variables to be displayed (which
a variable may or may not support) or you can ask for a literal
string to be displayed (contained in quotation marks in your
output command).

5

Variables
Within a computer program you will need to store information in

memory.

Variables of different types are used to do this. In essences,
they all provide a way to give a human-readable name to a
location in the computer’s memory that can be used to read
from and possibly write to that memory.

Some languages require you to declare the type of a variable
before you use it, and Java is one of those languages.

Primitive Variables
In object-oriented languages we will see two categories of

variables (primitives and class references) but for now we will
focus on primitive variable types and one basic class type.
– Numeric Primitives: byte, short, int, long, float, double

– Other Primitives: char, boolean

– Objects: String

For example, to declare a primitive variable to allocate some
memory for us to use to store an integer value, and then store
the value 0 there, we could use the following lines of code:

int counter;

counter = 0;

6

Simple Math Operation
Let’s say that we have our integer variable and we assign an
initial value into it, and then at some later point we decide we
want to add 5 to whatever the current value there happens to be.

int counter;

counter = 0;

//some other code here...

counter += 5;

//the above instruction says to

// read the current value from "counter"

// add 5 to that read value

// store the new value back into "counter"

Some Primitive Types and Sizes
• Integer values (and how many bytes they get)

– byte (1), short (2), int (4), long (8)

• Real numbers (and how many bytes they get)
– float (4), double (8)

• Individual Unicode characters
– char (2)

• Boolean truth values
– boolean (1)

7

Range of Values
The range of values depends on several things, one of which is how much

memory is available for storing the value and another is how Java interprets
the 0s and 1s stored in that memory.

A byte is one byte in size and can store a value between -128 and +127 but
boolean is also one byte in size yet it can only store two values; true or
false.

An int is four bytes in size and can store a value between -2,147,483,648 and
+2,147,483,647 but a float is also four bytes in size yet it can store numbers
between (roughly) -3.4x1038 and 3.4x1038 (though only with 7 digits of
precision).

What happens when you get too big?

A. The program crashes.

B. The program allocates more space.

C. The program throws an exception.

D. The value becomes 32,767.

E. The value becomes -32,768.

F. The value becomes 0.

If a short integer holds values from -32,768 to 32,767,
what do you think happens if it is holding the value 32,767

and you add 1 to it?

8

Fastest Responders
Seconds Participant Seconds Participant

Widening/Narrowing
In Java, by default, real number values typed in as literals are

assumed to be "double" values.

float val = 17.5; won't work because a float variable is a 4-byte
data type for real numbers and a double variable is an 8-byte
data type for real numbers.

Java allows automatic “widening” (you can assign something
smaller to something bigger) but not automatic narrowing.

… so it needs to be float val = 17.5F;

9

Hierarchy
There are two classifications of automatic
conversion attempts; widening and narrowing.

– Automatic widening is valid in Java.

– Automatic narrowing is invalid in Java.

The hierarchy for primitive numerics in Java is:

byte�short�int�long�float�double

Some Math Operations
Addition: + (also used for String concatenation)

Subtraction: - (also used as unary “negative”)

Multiplication: *

Division: /
– Integer division discards remainder

17 / 5 yields 3

Modulus: %
– Returns what the remainder would be if the two operands were

“divided”
17 % 5 yields 2

10

public class QuickMath {

public static void main(String[] args) {

int x, y, z;

x = 17;

y = 23;

z = x + y;

x = 42;

System.out.println(x);

System.out.println(y);

System.out.println(z);

System.out.println(x + y);

}

}

QuickMath.java example

 Commands/Assignments/Instructions

 Variable Declarations

 Output Instructions

System.out.println(x) displays what?

x = 17;
y = 23;
z = x + y;
x = 42;

System.out.println(x);
System.out.println(y);
System.out.println(z);
System.out.println(x + y);

A. 17

B. 42

C. Some other value.

11

System.out.println(z) displays what?

x = 17;
y = 23;
z = x + y;
x = 42;

System.out.println(x);
System.out.println(y);
System.out.println(z);
System.out.println(x + y);

A. 17

B. 42

C. Some other value.

Fastest Responders
Seconds Participant Seconds Participant

12

Addition
There are multiple ways to add values in Java. For
example:

x += 1;
x = x + 1;
x++;

Each line of code x=x+1; would essentially “instruct the
computer” to add 1 to the value stored in x, but they do
so in slightly different ways behind the scenes.

The ++ Operator
Also, more generally, the ++ operator allows you to increment
the values held by certain data types by a single “unit” of value.

For example, it can be used with any of the numeric primitives or char,
but cannot be used on things like boolean or String.

While a syntactic detail, it can be interesting or even useful to
know that there are actually two different ++ operators.

x++; //post increment

++x; //pre increment

13

Let’s go into Eclipse and see what the output of
this block of code will be…

x=1;

System.out.println(x++);

System.out.println(x);

x=1;

System.out.println(++x);

System.out.println(x);

x=1;

System.out.println(x++ + ++x);

System.out.println(x);

What is 'a'+'b' in Java?

A. ab

B. c

C. Ã

D. 195

14

How to store characters in Base 2
The typical way to represent a character (like “A”) is to
have a standard conversion table that assigns a
number to each characters.

ASCII (American Standard Code for Information Interchange) is
one:

– (“A” = 65 = 01000001)

Unicode is another:
– (“蓝” = 34013 = 1000010011011101)

Which requires more BITs to store the
letter “M” on a computer?

A. ASCII

B. Unicode

C. They use the same amount

15

Comparison Operators
(for numeric primitives and char)

Less than: <

Greater than: >

Less than or equal to: <=

Greater than or equal to: >=

Is equal to: ==

Is not equal to: !=

NOTE 1: = is for assignment, == is for comparison

NOTE 2: == when used with classes will be a topic that we discuss in more
detail later

Comps.java example
public class Comps {

public static void main(String[] args) {

boolean flag;

flag = (7<14);

System.out.println(flag);

flag = (17<14);

System.out.println(flag);

flag = (17=14); //THIS WON'T COMPILE

}

}

16

Constants
There are times when you might want to have something like a
named variable but don’t want it to actually be variable.

– These are typically called constants; named pieces of memory whose
values cannot be altered via instructions using that name.

– In Java, what we have are final variables; once they are given a value,
that value can not be changed by any of the operators we have.

The syntax is to put the keyword final in front of the type in the
declaration line.

Comments
There are times that you will want to leave notes for yourself and

other programmers within the code without it being executed.

This is where comments come in!

There are several types of comments in Java:
/* comment goes until the "close" marker */

/* comment goes until the "close“ marker

which might not be on the same line

as where the "open" appears */

// comment goes from "start" to the end of that line

17

Copyright © 2010-2019 : Evan Golub

