Lecture 08/29/17

Lecturer: Xiaodi Wu

Reading Assignment: Course Website; [AB] Chap 0.

Welcome to CMSC 652: Complexity Theory

Welcome to CMSC 652: Complexity Theory

&

Welcome to the new academic year!

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!
- CMSC 457:Introduction to Quantum Computation (Spring 18)

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!
- CMSC 457:Introduction to Quantum Computation (Spring 18)

ΤA

Sheng Yang, styang@cs.umd.edu

What is this course? Why are you here?

What is this course? Why are you here?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

What is this course? Why are you here?

a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

the study of the computation itself in an abstract way: theory of computation.

What is this course? Why are you here?

a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
- complexity theory studies the power of computation in terms of consumed computational resources.

What is this course? Why are you here?

a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
- complexity theory studies the power of computation in terms of consumed computational resources.
- it can be deemed as the opposite side of algorithms.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intuitive questions to address

Are algorithms that are given more time always able to solve more problems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Can tossing coins help us compute faster?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?

- Can tossing coins help us compute faster?
- Can we define randomness?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?
- Can you verify that an algorithm solves a problem without solving it yourself?

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*.

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*. **quantum**.

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*. **quantum**.

Necessary Steps:

Abstraction and modeling of the computation.

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*. **quantum**.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*. **quantum**.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time*, *memory*, *communication*, *number of rounds of communication*, *and randomness*. **quantum**.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.
- Comparison of the power of computation.

Methodology

We address all these questions using rigorous mathematical tools.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Methodology

We address all these questions using rigorous mathematical tools.

Expectation

 You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).

Methodology

We address all these questions using rigorous mathematical tools.

Expectation

You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> You are interested in the material.

Methodology

We address all these questions using rigorous mathematical tools.

Expectation

 You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).

- > You are interested in the material.
- You are willing to spend time outside of class in order to better understand the material presented in class.

Emphasize more on the conceptual messages!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

What if I want to do research in this direction ...

Further references will be provided! You are always welcome to ask questions!

Office Hours

Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Yang: W 2:30 om - 3:30 pm at AVW 3164.

Office Hours

- Wu: Tu Th 3:30 pm 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om 3:30 pm at AVW 3164.

Websites

Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.

Office Hours

- Wu: Tu Th 3:30 pm 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
- **Piazza**: announcements, discussion forum, ask for helps.

Office Hours

- Wu: Tu Th 3:30 pm 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
- **Piazza**: announcements, discussion forum, ask for helps.
- **ELMS**: distribute and submit assignments, grades, solutions.

Reading: [AB] Chap 0

Languages $L_f = \{x \in \{0,1\}^* : f(x) = 1\}$ for languages or decision problems. Example

$$\begin{aligned} \text{INDSET} &= \{ < G, k > : \exists S \subset V(G) \text{ s.t. } |S| \geq k \\ & \text{and } \forall u, v \in S, \overline{uv} \notin E(G) \}. \end{aligned}$$

Reading: [AB] Chap 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?