Lecture 08/29/17

Lecturer: Xiaodi Wu

Reading Assignment: Course Website; [AB] Chap 0.

Welcome to CMSC 652: Complexity Theory

Welcome to CMSC 652: Complexity Theory
\&

Welcome to the new academic year!

Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)

Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QulCS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!

Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QulCS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!
- CMSC 457:Introduction to Quantum Computation (Spring 18)

Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QulCS)
- NO Quantum covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!
- CMSC 457:Introduction to Quantum Computation (Spring 18)

TA

- Sheng Yang, styang@cs.umd.edu

Question
What is this course? Why are you here?

Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.

Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
- complexity theory studies the power of computation in terms of consumed computational resources.

Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
- complexity theory studies the power of computation in terms of consumed computational resources.
- it can be deemed as the opposite side of algorithms.

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?

Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?
- Can you verify that an algorithm solves a problem without solving it yourself?

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness.

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.

Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.
- Comparison of the power of computation.

Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Expectation

- You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).

Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Expectation

- You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).
- You are interested in the material.

Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Expectation

- You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).
- You are interested in the material.
- You are willing to spend time outside of class in order to better understand the material presented in class.

Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!

Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.

Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.

What if I want to do research in this direction ...
Further references will be provided! You are always welcome to ask questions!

More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om - 3:30 pm at AVW 3164.

More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om - 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.

More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om - 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
- Piazza: announcements, discussion forum, ask for helps.

More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 om - 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
- Piazza: announcements, discussion forum, ask for helps.
- ELMS: distribute and submit assignments, grades, solutions.

Reading: $[A B]$ Chap 0

Languages
$L_{f}=\left\{x \in\{0,1\}^{*}: f(x)=1\right\}$ for languages or decision problems.
Example

$$
\begin{aligned}
\operatorname{INDSET}= & \{<G, k>: \exists S \subset V(G) \text { s.t. }|S| \geq k \\
& \text { and } \forall u, v \in S, \overline{u v} \notin E(G)\} .
\end{aligned}
$$

Reading: [AB] Chap 0

(a)

(b)

(c)

