Assignment 1

You must submit it electronically to ELMS. This is a group assignment. Every group only needs to submit one solution. Group members get the same credit for the group submission.

This assignment is 7% in your total points. For the simplicity of the grading, the total points for the assignment is 70.

Problem 1 [10 pts]. Let \(T(\cdot) \) be an increasing computable function. Show that there exists a decidable language \(A \) such that the following occurs:

If \(M \) is a TM that, on all inputs of length \(n \), halts in \(\leq T(n) \) time, then there is an INFINITE NUMBER of \(x \) such that \(A(x) \neq M(x) \). (Here we let \(A(x) = 1 \) if \(x \in A \) otherwise \(A(x) = 0 \).)

Problem 2 [10 pts]. Assume \(L_1, L_2 \in \text{NP} \) and \(S_1 \in \text{CoNP} \). Assume \(\text{NP} \neq \text{CoNP} \). Answer each of the following with proof or a counter-example.

(a) Is \(L_1 \cup L_2 \) necessarily in \(\text{NP} \)?
(b) Is \(L_1 \cup S_1 \) necessarily in \(\text{CoNP} \)?

Problem 3 [10 pts]. Assume that the decision problem of Graph Isomorphism is in \(\text{P} \). Show that the following function can be computed in poly-time. Given two graphs \(G_1, G_2 \),

- If \(G_1 \) and \(G_2 \) are not isomorphic than output NO.
- If \(G_1 \) and \(G_2 \) are isomorphic than output an isomorphism.

Problem 4 [20 pts]. Prove that the following language

\[
L = \{ (M, x, t) : \exists w \in \{0,1\}^t, s.t., M(x, w) \text{ halts within } t \text{ steps with output } 1 \}
\]

(where \(M \) is a deterministic Turing machine) is \(\text{NP} \)-complete.

Problem 5 [20 pts]. Prove that the following language is \(\text{NP} \)-complete

\[
3\text{COL} = \{ G : \text{there exists a coloring of } G \text{ with } 3 \text{ colors s.t. no adjacent vertices share the same color.} \}
\]

(Hint: You can assume 3SAT is \(\text{NP} \)-complete. You may use other resources but let me know what they are and you should hand in your own solution.)